Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yangchao Luo is active.

Publication


Featured researches published by Yangchao Luo.


International Journal of Biological Macromolecules | 2014

Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery

Yangchao Luo; Qin Wang

Chitosan, as a unique positively charged polysaccharide, has been one of the most popular biopolymers for development of drug delivery systems for various applications, due to its promising properties, including high biocompatibility, excellent biodegradability, low toxicity, as well as abundant availability and low production cost. Since last decade, increasing attention has been attracted by delivery systems fabricated from natural biopolymer-based polyelectrolyte complexes (PEC), formed by electrostatic interactions between two oppositely charged biopolymers. In order to tailor specific applications of chitosan-based PEC drug delivery systems, various forms have been developed in recent years, including nanoparticles, microparticles, beads, tablets, gels, as well as films and membranes. The present review focuses on the recent advances in drug delivery applications of chitosan-based PEC with other natural polysaccharides, including alginate, hyaluronic acid, pectin, carrageenan, xanthan gum, gellan gum, gum arabic, and carboxymethyl cellulose, etc. The fabrication techniques, characterizations, as well as in vitro and in vivo evaluations of each PEC delivery system are discussed in detail.


Colloids and Surfaces B: Biointerfaces | 2011

Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study

Yangchao Luo; Boce Zhang; Monica Whent; Liangli (Lucy) Yu; Qin Wang

Chitosan (CS) nanoparticles coated with zein has been newly demonstrated as a promising encapsulation and delivery system for hydrophilic nutrient with enhanced bioactivities in our previous study. In this study, a hydrophobic nutrient, α-tocopherol (TOC), was successfully encapsulated into zein/CS complex. The fabrication parameters, including zein concentration, zein/CS weight ratio, and TOC loading percentage, were systematically investigated. The physicochemical and structural analysis showed that the electrostatic interactions and hydrogen bonds were major forces responsible for complex formation. The scanning electron microscopy study revealed the spherical nature with smooth surface of complex. TOC encapsulation was also evidenced by differential scanning calorimetry. The particle size and zeta potential of the complex varied from 200 to 800 nm and +22.8 to +40.9 mV, respectively. The kinetic release profile of the TOC showed burst effect followed by slow release. Compared with zein nanoparticles, zein/CS complex provided better protection of TOC release against gastrointestinal conditions, due to CS coatings. Zein/CS complex is believed to be a promising delivery system for supplementation or treatment of hydrophobic nutrients or drugs.


Journal of Agricultural and Food Chemistry | 2012

Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3

Yangchao Luo; Zi Teng; Qin Wang

In this study, zein nanoparticles coated with carboxymethyl chitosan (CMCS) were prepared to encapsulate vitamin D3 (VD3). VD3 was first encapsulated into zein nanoparticles using a low-energy phase separation method and coated with CMCS simultaneously. Then, calcium was added to cross-link CMCS to achieve thicker and denser coatings. The nanoparticles with CMCS coatings had a spherical structure with particle size from 86 to 200 nm. The encapsulation efficiency was greatly improved to 87.9% after CMCS coating, compared with 52.2% for that using zein as a single encapsulant. The physicochemical properties were characterized by differential scanning calorimetry and Fourier transform infrared spectroscopy. Nanoparticles with coatings provided better controlled release of VD3 in both PBS medium and simulated gastrointestinal tract. Photostability against UV light was significantly improved after encapsulation. Encapsulation of hydrophobic nutrients in zein nanoparticles with CMCS coatings is a promising approach to enhance chemical stability and controlled release property.


Journal of Agricultural and Food Chemistry | 2012

Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation.

Zi Teng; Yangchao Luo; Qin Wang

Nanoparticles were synthesized from soy protein, one of the most abundant and widely utilized plant proteins, for nutraceutical and drug encapsulation. The preparation process consisted of dispersion, desolvation, drug incorporation, cross-linking, and evaporation. The role of each procedure in the formation of nanoparticles was systematically investigated by means of particle size, size distribution, and zeta potential as well as morphology observation. Curcumin as a model drug was encapsulated successfully into the nanoparticles, evidenced by Fourier transform infrared spectroscopy and X-ray diffraction patterns. The average size of the curcumin-loaded nanoparticles was 220.1 to 286.7 nm, and their zeta potential was around -36 mV. The highest encapsulation efficiency and loading efficiency achieved were 97.2% and 2.7%, respectively. The release of curcumin in phosphate buffer saline followed a biphasic pattern. Possible mechanisms of the formation of soy protein nanoparticles as well as the incorporation of curcumin were discussed based on the data obtained from this study.


Food Chemistry | 2013

Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3

Zi Teng; Yangchao Luo; Qin Wang

In this study, complex nanoparticles were developed from carboxymethyl chitosan (CMCS) and soy protein isolate (SPI) by a simple ionic gelation method. The effect of Ca(2+) concentration, pH and CMCS/SPI mass ratio on the formation of nanoparticles was systematically investigated. Vitamin D3 (VD), a hydrophobic micronutrient, was successfully incorporated into the polymeric complex, forming particles with sizes between 162 and 243 nm and zeta potentials ranging from -10 to -20 mV. In comparison with CMCS, the CMCS/SPI complex required a lower concentration of Ca(2+), and it showed better particle forming capability over a broad range of pH. These features resulted in an increased loading efficiency to 6.06%. In addition, the complex nanoparticles achieved significantly higher encapsulation efficiency (up to 96.8%), possibly due to their compact structure and high capability of hydrogen bonding evidenced by Fourier transform infrared spectroscopy (FTIR). In contrast to the ones prepared with SPI, the complex nanoparticles exhibited a reduced (42.3% compared to 86.1%) release of VD in simulated gastric fluid and an increased (36.0% compared to 8.2%) release under simulated intestinal condition. These characteristics made the CMCS/SPI complex nanoparticles an attractive candidate for the encapsulation and controlled release of hydrophobic nutraceuticals and bioactives.


Food Chemistry | 2014

Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers.

Yaqiong Zhang; Yuge Niu; Yangchao Luo; Mei Ge; Tian Yang; Liangli (Lucy) Yu; Qin Wang

Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period.


Carbohydrate Polymers | 2015

Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake

Yangchao Luo; Zi Teng; Ying Li; Qin Wang

The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs.


Journal of Agricultural and Food Chemistry | 2013

Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.

Yangchao Luo; Zi Teng; Thomas T.Y. Wang; Qin Wang

Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.


International Journal of Pharmaceutics | 2015

Casein/pectin nanocomplexes as potential oral delivery vehicles

Yangchao Luo; Kang Pan; Qixin Zhong

Delivery systems prepared with natural biopolymers are of particular interests for applications in food, pharmaceutics and biomedicine. In this study, nanocomplex particles of sodium caseinate (NaCas) and pectin were fabricated and investigated as potential oral delivery vehicles. Nanocomplexes were prepared with three mass ratios of NaCas/pectin by acidification using glucono-δ-lactone and thermal treatment. NaCas/pectin at 1:1 mass ratio resulted in dispersions with the lowest turbidity and the smallest and most uniform nanocomplexes. Thermal treatment at 85 °C for 30 min facilitated the formation of stable, compact, and spherical nanocomplexes. Heating not only greatly increased the yield of nanocomplexes but also significantly improved the encapsulation capability of rutin studied as a model compound. Pectin in nanocomplexes delayed the hydrolysis of NaCas by pepsin at gastric conditions and enabled the controlled release of most rutin in simulated intestinal conditions. The nanocomplexes based on food-sourced biopolymers have promising features for oral delivery of nutrients and medicines.


Journal of Agricultural and Food Chemistry | 2013

Development and Application of Nanoparticles Synthesized with Folic Acid Conjugated Soy Protein

Zi Teng; Yangchao Luo; Thomas T.Y. Wang; Boce Zhang; Qin Wang

In this study, soy protein isolate (SPI) was conjugated with folic acid (FA) to prepare nanoparticles for target-specific drug delivery. Successful conjugation was evidenced by UV spectrophotometry and primary amino group analysis. An increase in count rate by at least 142% was observed in FA-SPI nanoparticles compared to the nonconjugated ones, whereas the particle size was decreased upon FA conjugation. This was probably attributed to the substitution of positively charged lysine residues by the FA backbone. The ζ-potential ranged from -36 to -42 mV depending on the conjugation degree, indicating desirable dispersion stability. Curcumin as a model drug was encapsulated successfully into FA-SPI nanoparticles, evidenced by X-ray diffraction study. The highest encapsulation and loading efficiencies were around 92.7% and 5.4%, respectively, which were significantly higher (P < 0.05) than those with nonconjugated SPI nanoparticles. In addition, a faster and more complete release of curcumin was observed for FA-SPI nanoparticles in PBS/Tween 20 buffer. Cell culture study showed that conjugation of FA resulted in an increase in cellular uptake by at most 93% in Caco-2 cells. These results suggested that FA-SPI is a potential wall material for encapsulation and enhanced delivery of anticancer drugs.

Collaboration


Dive into the Yangchao Luo's collaboration.

Top Co-Authors

Avatar

Taoran Wang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Qiaobin Hu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Mingyong Zhou

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Jingyi Xue

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Baoping Ji

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bo Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fang Tian

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Gang Chen

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chao Chang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Kang Pan

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge