Yangfu Jiang
Sichuan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yangfu Jiang.
Cellular and Molecular Life Sciences | 2011
Hui Hua; Minjing Li; Ting Luo; Yancun Yin; Yangfu Jiang
Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.
Breast Cancer Research | 2010
Ting Luo; Jiao Wang; Yancun Yin; Hui-Ming Hua; Jing-jing Jing; Xiangming Sun; Minjing Li; You-You Zhang; Yangfu Jiang
IntroductionPaclitaxel (Taxol®) is a microtubule-targeted agent that is widely used for cancer treatment. However, resistance to paclitaxel is frequently encountered in the clinic. There is increasing interest in identifying compounds that may increase the sensitivity to conventional chemotherapeutic agents. In this study, we investigated whether green tea polyphenol (-)-epigallocatechin gallate (EGCG) could sensitize breast carcinoma to paclitaxel in vivo.MethodsBreast cancer cells were treated with or without EGCG and paclitaxel followed by detection of cell survival and apoptosis. c-Jun NH2-terminal kinase (JNK) phosphorylation and glucose-regulated protein 78 (GRP78) expression were detected by Western blotting. For in vivo study, 4T1 breast cancer cells were inoculated into Balb/c mice to establish a transplantation model. The tumor-bearing mice were treated with or without EGCG (30 mg/kg, i.p.) and paclitaxel (10 mg/kg, i.p.). Tumor growth was monitored. Apoptosis in tumor tissues was detected. Cell lysates from tumors were subjected to Western blot analysis of GRP78 expression and JNK phosphorylation.ResultsEGCG synergistically sensitized breast cancer cells to paclitaxel in vitro and in vivo. EGCG in combination with paclitaxel significantly induced 4T1 cells apoptosis compared with each single treatment. When tumor-bearing mice were treated with paclitaxel in combination with EGCG, tumor growth was significantly inhibited, whereas the single-agent activity for paclitaxel or EGCG was poor. EGCG overcame paclitaxel-induced GRP78 expression and potentiated paclitaxel-induced JNK phosphorylation in 4T1 cells both in vitro and in vivo.ConclusionsEGCG may be used as a sensitizer to enhance the cytotoxicity of paclitaxel.
Journal of Cellular and Molecular Medicine | 2009
Jiao Wang; Yancun Yin; Hui Hua; Minjing Li; Ting Luo; Li Xu; Ranran Wang; Dongbo Liu; You Zhang; Yangfu Jiang
Taxane and vinblastine represent two classes of microtubules‐targeted agents for cancer chemotherapy. Although taxol and vinblastine are widely used for cancer treatment, resistance to these agents is frequently encountered in the clinic. An ongoing question has been what mechanisms are involved in the resistance of tumour cells to microtubules‐targeted agents or how the clinical effectiveness can be improved. There is increasing evidence that microtubules interact with the endoplasmic reticulum (ER). Here, we have shown that taxol and vinblastine induce multiple arms of the ER stress response, including up‐regulation of glucose‐regulated protein 78 (GRP78) expression, X‐box binding protein 1 splicing and eukaryotic initiation factor 2α phosphorylation. Abrogation of GRP78 induction sensitizes breast cancer cells to taxol and vinblastine. Treatment with (‐)‐epigallocatechin gallate (EGCG), a known GRP78 inhibitor, synergistically promotes taxol‐ and vinblastine‐induced cell death. GRP78 knockdown or EGCG potentiates taxol‐ and vinblastine‐induced activation of pro‐apoptosis arms of the ER stress response, such as JNK phosphorylation, caspase‐7 and PARP cleavage. Inhibition of JNK and caspase‐7 abrogates EGCG sensitization of breast cancer cells to taxol and vinblastine. We conclude that induction of the unfolded protein response represents a novel mechanism underlying the efficacy and resistance to microtubules‐targeted agents. Combination of compounds capable of suppressing GRP78 might be a novel approach for improving the effectiveness of microtubules‐targeted chemotherapy.
World journal of clinical oncology | 2014
Minjing Li; Yancun Yin; Jiao Wang; Yangfu Jiang
Breast cancer is the most common cancer among women. In recent years, many in vitro and in vivo studies indicate that green tea possesses anti-cancer effects. The epidemiological studies, however, have produced inconclusive results in humans. Likewise, results from animal models about the preventive or therapeutic effects of green tea components are inconclusive. The mechanisms by which green tea intake may influence the risk of breast cancer in humans remain elusive mechanisms by which green tea intake may influence. Here, we review recent studies of green tea polyphenols and their applications in the prevention and treatment of breast cancer. Furthermore, we discuss the effect of green tea components on breast cancer by reviewing epidemiological studies, animal model studies and clinical trials. At last, we discuss the mechanisms by which green tea components suppress the development and recurrence of breast cancer. A better understanding of the mechanisms will improve the utilization of green tea in breast cancer prevention and therapy and pave the way to novel prevention and treatment strategies for breast cancer.
Journal of Cellular and Molecular Medicine | 2009
Minjing Li; Jiao Wang; Jian Jing; Hui Hua; Ting Luo; Li Xu; Ranran Wang; Dongbo Liu; Yangfu Jiang
Heat shock protein 70 (HSP70) is frequently overexpressed in a variety of human malignancies and protects cancer cells against apoptosis in response to various stresses. The bioflavonoid quercetin inhibits HSP70 expression and induces cancer cells apoptosis. In the present study, we have investigated the effects of HSP70 down‐regulation on the unfolded protein response (UPR) and addressed a novel strategy to enhance the proapoptotic effect of quercetin by suppressing GRP78 induction simultaneously. Treatment of human breast cancer cells with quercetin down‐regulates HSP70 expression, but up‐regulates GRP78 expression in a dose‐dependent manner. Down‐regulation of HSP70 by small interfering RNA also leads to induction of GRP78. Moreover, our studies reveal that HSP70 knockdown or quercetin induces other typical components of the UPR, including CHOP expression, eIF2α and JNK phosphorylation, caspases activation and XBP‐1 splicing. Abrogating the induction of pro‐survival chaperone GRP78 by small interfering RNA sensitizes breast cancer cells to quercetin. Colony survival assays demonstrate that treatment of breast cancer cells with green tea (−)‐epigallocatechin gallate (EGCG), which binds to the ATP‐binding domain of GRP78 and blocks its protective function, synergistically promoted quercetin‐induced cell death. These studies reveal that HSP70 down‐regulation leads to the induction of UPR. The pro‐survival GRP78 induction contributes to quercetin resistance. Abrogation of GRP78 induction or inhibition of GRP78 activity increases the effectiveness of quercetin. These findings indicate that combinational administration of flavonoids capable of suppressing HSP70 and GRP78 such as quercetin and EGCG might represent a novel approach for cancer therapy or chemoprevention.
Breast Cancer Research | 2008
Jiao Wang; Hui Hua; Yuliang Ran; Hongyin Zhang; Weiping Liu; Zhihua Yang; Yangfu Jiang
IntroductionAberrant microenvironment and endoplasmic reticulum (ER) stress are associated with solid-tumor progression. Stress proteins, like heat shock proteins and glucose-regulated proteins, are frequently overexpressed in human tumors. It has been reported that derlin-1 is involved in ER stress response. In vitro studies have demonstrated that derlin-1 participates in the retrotranslocation of misfolded proteins from ER into the cytosol. Because the roles of derlin-1 in human cancer have not yet been characterized, we investigated the expression of derlin-1 in human breast carcinoma and whether it protected cancer cells against ER stress-induced apoptosis.MethodsSurgical specimens of human breast cancer and/or paired normal tissues from the same patients were collected for immunohistochemical and/or Western blot analysis with anti-human derlin-1 antibody. The expression of derlin-1 in human breast cancer cell lines was detected by reverse transcription-polymerase chain reaction or Western blot. A synthetic small interfering RNA against derlin-1 was introduced into breast cancer cells to inhibit derlin-1 expression. The effects of derlin-1 knockdown on ER stress-induced apoptosis were determined by flow cytometry analysis.ResultsThese analyses demonstrated that 66.7% of the breast carcinoma tissues expressed derlin-1, whereas derlin-1 was rarely expressed in normal mammary glands. The expression of derlin-1 in human breast carcinoma correlated with tumor grade and axillary lymph node metastasis. On examining the expression of derlin-1 in human breast cancer cell lines, we found that derlin-1 expression was enhanced by ER stress-inducing agents. Derlin-1 knockdown sensitized breast cancer cells to ER stress-induced apoptosis.ConclusionThe observed derlin-1 overexpression in breast cancer, together with its function in relieving ER stress-induced apoptosis, suggests that regulation of the ER stress response pathway may be critical in the development and progression of breast cancer.
Journal of Biological Chemistry | 2010
Minjing Li; Yancun Yin; Hui Hua; Xiangming Sun; Ting Luo; Jiao Wang; Yangfu Jiang
Insulin-like growth factor (IGF) system plays important roles in carcinogenesis and maintenance of the malignant phenotype. Signaling through the IGF-I receptor (IGF-IR) has been shown to stimulate the growth and motility of a wide range of cancer cells. γ-Synuclein (SNCG) is primarily expressed in peripheral neurons but also overexpressed in various cancer cells. Overexpression of SNCG correlates with tumor progression. In the present study we demonstrated a reciprocal regulation of IGF-I signaling and SNCG expression. IGF-I induced SNCG expression in various cancer cells. IGF-IR knockdown or IGF-IR inhibitor repressed SNCG expression. Both phosphatidylinositol 3-kinase and mitogen-activated protein kinase were involved in IGF-I induction of SNCG expression. Interestingly, SNCG knockdown led to proteasomal degradation of IGF-IR, thereby decreasing the steady-state levels of IGF-IR. Silencing of SNCG resulted in a decrease in ligand-induced phosphorylation of IGF-IR and its downstream signaling components, including insulin receptor substrate (IRS), Akt, and ERK1/2. Strikingly, SNCG physically interacted with IGF-IR and IRS-2. Silencing of IRS-2 impaired the interaction between SNCG and IGF-IR. Finally, SNCG knockdown suppressed IGF-I-induced cell proliferation and migration. These data reveal that SNCG and IGF-IR are mutually regulated by each other. SNCG blockade may suppress IGF-I-induced cell proliferation and migration. Conversely, IGF-IR inhibitors may be of utility in suppressing the aberrant expression of SNCG in cancer cells and thereby block its pro-tumor effects.
Cell Death and Disease | 2014
Y Teng; M Gao; Jiao Wang; Qingbin Kong; Hui Hua; Ting Luo; Yangfu Jiang
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inducer of cancer cell death that holds promise in cancer therapy. Cancer cells are more susceptible than normal cells to the cell-death-inducing effects of TRAIL. However, a variety of cancer cells are resistant to TRAIL through complex mechanisms. Here, we investigate the effects of inhibition of eukaryotic initiation factor 2 subunit α (eIF2α) dephosphorylation on TRAIL-induced apoptosis in hepatoma cells. Treatment of hepatoma cells with salubrinal, an inhibitor of eIF2α dephosphorylation, enhances TRAIL-induced eIF2α phosphorylation, CCAAT/enhancer-binding protein homologous protein (CHOP) expression and caspase activation. Salubrinal enhances TRAIL-induced apoptosis, which could be abrogated by caspase inhibitor. Overexpression of phosphomimetic eIF2α (S51D) enhances TRAIL-induced CHOP expression, caspase 7 and PARP cleavage and apoptosis. By contrast, overexpression of phosphodeficient eIF2α (S51A) abrogates the stimulation of TRAIL-induced apoptosis by salubrinal. Moreover, knockdown of growth arrest and DNA damage-inducible protein 34 (GADD34), which recruits protein phosphatase 1 to dephosphorylate eIF2α, enhances TRAIL-induced eIF2α phosphorylation, CHOP expression, caspase activation and apoptosis. Furthermore, the sensitization of hepatoma cells to TRAIL by salubrinal is dependent on CHOP. Knockdown of CHOP abrogates the stimulation of TRAIL-induced caspase activation and apoptosis by salubrinal. Combination of salubrinal and TRAIL leads to increased expression of Bim, a CHOP-regulated proapoptotic protein. Bim knockdown blunts the stimulatory effect of salubrinal on TRAIL-induced apoptosis. Collectively, these findings suggest that inhibition of eIF2α dephosphorylation may lead to synthetic lethality in TRAIL-treated hepatoma cells.
Cell Research | 2016
Yancun Yin; Hui Hua; Minjing Li; Shu Liu; Qingbin Kong; Ting Shao; Jiao Wang; Yuanming Luo; Qian Wang; Ting Luo; Yangfu Jiang
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.
Apoptosis | 2015
Jiao Wang; Shu Liu; Yancun Yin; Mingjin Li; Bo Wang; Li Yang; Yangfu Jiang
The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.