Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yangmao Wen is active.

Publication


Featured researches published by Yangmao Wen.


Remote Sensing | 2016

Deformation and Source Parameters of the 2015 Mw 6.5 Earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 Data

Yangmao Wen; Caijun Xu; Yang Liu; Guoyan Jiang

In this study, Interferometric Synthetic Aperture Radar (InSAR) was used to determine the seismogenic fault and slip distribution of the 3 July 2015 Pishan earthquake in the Tarim Basin, western China. We obtained a coseismic deformation map from the ascending and descending Sentinel-1A satellite Terrain Observation with Progressive Scans (TOPS) mode and the ascending Advanced Land Observation Satellite-2 (ALOS-2) satellite Fine mode InSAR data. The maximum ground uplift and subsidence were approximately 13.6 cm and 3.2 cm, respectively. Our InSAR observations associated with focal mechanics indicate that the source fault dips to southwest (SW). Further nonlinear inversions show that the dip angle of the seimogenic fault is approximate 24°, with a strike of 114°, which is similar with the strike of the southeastern Pishan fault. However, this fault segment responsible for the Pishan event has not been mapped before. Our finite fault model reveals that the peak slip of 0.89 m occurred at a depth of 11.6 km, with substantial slip at a depth of 9–14 km and a near-uniform slip of 0.2 m at a depth of 0–7 km. The estimated moment magnitude was approximately Mw 6.5, consistent with seismological results.


Geophysical Research Letters | 2015

Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion

Guoyan Jiang; Yangmao Wen; Yajing Liu; Xiwei Xu; Lihua Fang; Guihua Chen; Meng Gong; Caijun Xu

Over 1000 earthquakes struck the northwest of Kangding on the Xianshuihe fault in southwest China between 22 and 29 November 2014, including two largest events of Mw 5.9 and Mw 5.6. The hypocenters of 799 relocated earthquakes suggest that two independent main shock-aftershock subsequences occurred on the Selaha and Zheduotang branches of the Xianshuihe fault, respectively. Fault slip inversion results from one interferometric synthetic aperture radar (InSAR) interferogram (26 September 2014 to 5 December 2014) show that the Mw 5.9 main shock produced a maximum slip of ~0.47 m at the depth of ~9 km. However, there is no distinct slip associated with the Mw 5.6 main shock. The InSAR determined moment is 2.36 × 1018 Nm with a rigidity of 30 GPa, equivalent to Mw 6.2, which is about twofold the total seismic moment of all the recorded earthquakes during the InSAR time span. This large discrepancy between geodetic and seismic moment estimates indicates that there was probably rapid aseismic afterslip in the 2 weeks following the Mw 5.9 main shock. The released seismic energy of this earthquake sequence is far less than the accumulated strain energy since the 1955 M 712 earthquake on the same fault branch, which implies that the seismic risk on the Selaha-Kangding segment of the Xianshuihe fault remains high.


Geophysical Research Letters | 2016

Source model of the 2015 Mw 6.4 Pishan earthquake constrained by interferometric synthetic aperture radar and GPS: Insight into blind rupture in the western Kunlun Shan

Ping He; Qi Wang; Kaihua Ding; Min Wang; Xuejun Qiao; Jie Li; Yangmao Wen; Caijun Xu; Shaomin Yang; Rong Zou

The Pishan, Xinjiang, earthquake on 3 July 2015 is the one of largest events (Mw 6–7) that has occurred along the western Kunlun Shan, northwestern edge of the Tibetan Plateau in recent time. It involved blind thrusting at a shallow depth beneath the range front, providing a rare chance to gain insights into the interaction between the Tarim Basin and the Tibetan Plateau. Here we present coseismic ground displacements acquired by high-resolution ALOS-2 SAR imagery and derived from GPS resurveys on several near-field geodetic markers after the event. We observed a maximum displacement exceeding 10 cm in the epicentral region. Analysis of the data based on a finite fault model indicates that coseismic slip occurred on a subsurface plane of 22 km × 8 km in size with a dip of about 27° to the north and a strike of 114°, representing partial break of one ramp fault buried in Paleozoic strata at 8–16 km depths beneath the foothill of the western Kunlun Shan. This blind rupture is characterized largely by a compact thrusting patch with a peak slip of 0.63 m, resulting in a stress drop of 2.3 MPa. The source model yields a geodetic moment of 5.05 × 1018 N · m, corresponding to Mw 6.4. The Pishan earthquake suggests a northward migration of deformation front of the Tibetan Plateau onto the Tarim Basin. Our finding highlights slip along ramp-decollement faults to build up the western Kunlun Shan as the Tarim slab is subducting beneath western Tibet.


Remote Sensing | 2017

Slip Model for the 25 November 2016 Mw 6.6 Aketao Earthquake, Western China, Revealed by Sentinel-1 and ALOS-2 Observations

Shuai Wang; Caijun Xu; Yangmao Wen; Zhi Yin; Guoyan Jiang; Lihua Fang

On 25 November 2016 (UTC 14:24:30), an Mw 6.6 dextral strike-slip earthquake ruptured Aketao county in the northwestern portion of the Kongur Shan extensional system, western China. We extracted surface deformation maps and investigated the distribution of the coseismic slip of the 2016 Aketao earthquake by exploiting the Interferometric Synthetic Aperture Radar data imaged by the Sentinel-1 satellites of the European Space Agency and the ALOS-2 satellite of the Japanese Aerospace Exploration Agency. Assuming the crust of the earth is an elastic half-space homogeneous medium, the best fitting slip model suggests a dip angle of 78° for the seismogenic fault. The rupture of the 2016 Aketao earthquake may have consisted of two sub-events that occurred in rapid succession within a few seconds, resulting in two large discrete asperities with maximum slip of ~0.85 m, which were separated by a ~6 km-wide small slip gap. The maximum slip for the sub-event near the epicenter was mainly concentrated at a depth of ~10 km and that of the other at a depth of ~5 km. The estimated total seismic moment from the optimal slip model is 1.58 × 1019 N•m, corresponding to an event with a moment magnitude of 6.74. More than 65% of the aftershocks occurred in the areas of increased Coulomb failure stress, in which the stress was estimated to have been increased by at least 0.1 bar. Matching the potential barrier on the fault with the depth distribution of aftershocks implies that friction on the causative fault was heterogeneous, which may play a primary role in controlling the active behavior of the Muji fault.


Remote Sensing | 2016

Time-Dependent Afterslip of the 2009 Mw 6.3 Dachaidan Earthquake (China) and Viscosity beneath the Qaidam Basin Inferred from Postseismic Deformation Observations

Yang Liu; Caijun Xu; Zhenhong Li; Yangmao Wen; Jiajun Chen; Zhicai Li

The 28 August 2009 Mw 6.3 Dachaidan (DCD) earthquake occurred at the Qaidam Basin’s northern side. To explain its postseismic deformation time series, the method of modeling them with a combination model of afterslip and viscoelastic relaxation is improved to simultaneously assess the time-dependent afterslip and the viscosity. The coseismic slip model in the layered model is first inverted, showing a slip pattern close to that in the elastic half-space. The postseismic deformation time series can be explained by the combination model, with a total root mean square (RMS) misfit of 0.37 cm. The preferred time-dependent afterslip mainly occurs at a depth from the surface to about 9.1 km underground and increases with time, indicating that afterslip will continue after 28 July 2010. By 334 days after the main shock, the moment released by the afterslip is 0.91 × 1018 N∙m (Mw 5.94), approximately 24.3% of that released by the coseismic slip. The preferred lower bound of the viscosity beneath the Qaidam Basin’s northern side is 1 × 1019 Pa·s, close to that beneath its southern side. This result also indicates that the viscosity structure beneath the Tibet Plateau may vary laterally.


Remote Sensing | 2016

Interseismic Deformation of the Altyn Tagh Fault Determined by Interferometric Synthetic Aperture Radar (InSAR) Measurements

Sen Zhu; Caijun Xu; Yangmao Wen; Yang Liu

The Altyn Tagh Fault (ATF) is one of the major left-lateral strike-slip faults in the northeastern area of the Tibetan Plateau. In this study, the interseismic deformation across the ATF at 85°E was measured using 216 interferograms from 33 ENVISAT advanced synthetic aperture radar images on a descending track acquired from 2003 to 2010, and 66 interferograms from 15 advanced synthetic aperture radar images on an ascending track acquired from 2005 to 2010. To retrieve the pattern of interseismic strain accumulation, a global atmospheric model (ERA-Interim) provided by the European Center for Medium Range Weather Forecast and a global network orbital correction approach were applied to remove atmospheric effects and the long-wavelength orbital errors in the interferograms. Then, the interferometric synthetic aperture radar (InSAR) time series with atmospheric estimation model was used to obtain a deformation rate map for the ATF. Based on the InSAR velocity map, the regional strain rates field was calculated for the first time using the multi-scale wavelet method. The strain accumulation is strongly focused on the ATF with the maximum strain rate of 12.4 × 10−8/year. We also show that high-resolution 2-D strain rates field can be calculated from InSAR alone, even without GPS data. Using a simple half-space elastic screw dislocation model, the slip-rate and locking depth were estimated with both ascending and descending surface velocity measurements. The joint inversion results are consistent with a left-lateral slip rate of 8.0 ± 0.7 mm/year on the ATF and a locking depth of 14.5 ± 3 km, which is in agreement with previous results from GPS surveys and ERS InSAR results. Our results support the dynamic models of Asian deformation requiring low fault slip rate.


Remote Sensing | 2016

Heterogeneous Fault Mechanisms of the 6 October 2008 MW 6.3 Dangxiong (Tibet) Earthquake Using Interferometric Synthetic Aperture Radar Observations

Caijun Xu; Bei Xu; Yangmao Wen; Yang Liu

Most current crustal deformation models do not account for topographic effects, crustal lateral variations, and complex fault geometries. To overcome these limitations, we apply finite element models constrained by interferometric Synthetic Aperture Radar (InSAR) images of co-seismic displacements to the 2008 Mw 6.3 Dangxiong earthquake that occurred in Yadong–Gulu rift, southern Tibet. For mountainous plateau environments, InSAR observations are advantageous for studying crustal deformation and crustal medium structure. We evaluate the effect of topography and variations in Poisson’s ratio and elastic moduli on estimation of coseismic deformation from InSAR observations. The results show that coseismic surface displacements are more sensitive to variations in Young’s modulus than to variations in topography and Poisson’s ratio. Therefore, with constant Poisson’s ratio and density, we change the Young’s modulus on each side of the fault to obtain the model that best fits the observations. This is attained when the Young’s moduli in the eastern and western sides of the fault were 2.6 × 1010 Pa and 7.8 × 1010 Pa, respectively. The result is consistent with previous field surveys that the medium on either side of the fault is different.


Sensors | 2015

A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations

Yang Liu; Caijun Xu; Yangmao Wen; Hok Sum Fok

On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth’s surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 1018 Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.


Journal of Geodesy | 2017

Implication of adaptive smoothness constraint and Helmert variance component estimation in seismic slip inversion

Qingbiao Fan; Caijun Xu; Lei Yi; Yang Liu; Yangmao Wen; Zhi Yin

When ill-posed problems are inverted, the regularization process is equivalent to adding constraint equations or prior information from a Bayesian perspective. The veracity of the constraints (or the regularization matrix R) significantly affects the solution, and a smoothness constraint is usually added in seismic slip inversions. In this paper, an adaptive smoothness constraint (ASC) based on the classic Laplacian smoothness constraint (LSC) is proposed. The ASC not only improves the smoothness constraint, but also helps constrain the slip direction. A series of experiments are conducted in which different magnitudes of noise are imposed and different densities of observation are assumed, and the results indicated that the ASC was superior to the LSC. Using the proposed ASC, the Helmert variance component estimation method is highlighted as the best for selecting the regularization parameter compared with other methods, such as generalized cross-validation or the mean squared error criterion method. The ASC may also benefit other ill-posed problems in which a smoothness constraint is required.


Sensors | 2016

Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique

Yang Liu; Caijun Xu; Yangmao Wen; Zhicai Li

On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19–334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.

Collaboration


Dive into the Yangmao Wen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping He

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Kaihua Ding

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Qi Wang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Lei Yi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lihua Fang

China Earthquake Administration

View shared research outputs
Top Co-Authors

Avatar

Xiwei Xu

China Earthquake Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge