Yangqiu Song
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yangqiu Song.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011
Wen-Yen Chen; Yangqiu Song; Hongjie Bai; Chih-Jen Lin; Edward Y. Chang
Spectral clustering algorithms have been shown to be more effective in finding clusters than some traditional algorithms, such as k-means. However, spectral clustering suffers from a scalability problem in both memory use and computational time when the size of a data set is large. To perform clustering on large data sets, we investigate two representative ways of approximating the dense similarity matrix. We compare one approach by sparsifying the matrix with another by the Nyström method. We then pick the strategy of sparsifying the matrix via retaining nearest neighbors and investigate its parallelization. We parallelize both memory use and computation on distributed computers. Through an empirical study on a document data set of 193,844 instances and a photo data set of 2,121,863, we show that our parallel algorithm can effectively handle large problems.
IEEE Transactions on Visualization and Computer Graphics | 2011
Weiwei Cui; Shixia Liu; Li Tan; Conglei Shi; Yangqiu Song; Zekai Gao; Huamin Qu; Xin Tong
Understanding how topics evolve in text data is an important and challenging task. Although much work has been devoted to topic analysis, the study of topic evolution has largely been limited to individual topics. In this paper, we introduce TextFlow, a seamless integration of visualization and topic mining techniques, for analyzing various evolution patterns that emerge from multiple topics. We first extend an existing analysis technique to extract three-level features: the topic evolution trend, the critical event, and the keyword correlation. Then a coherent visualization that consists of three new visual components is designed to convey complex relationships between them. Through interaction, the topic mining model and visualization can communicate with each other to help users refine the analysis result and gain insights into the data progressively. Finally, two case studies are conducted to demonstrate the effectiveness and usefulness of TextFlow in helping users understand the major topic evolution patterns in time-varying text data.
Pattern Recognition | 2008
Yangqiu Song; Feiping Nie; Changshui Zhang; Shiming Xiang
In practice, many applications require a dimensionality reduction method to deal with the partially labeled problem. In this paper, we propose a semi-supervised dimensionality reduction framework, which can efficiently handle the unlabeled data. Under the framework, several classical methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), maximum margin criterion (MMC), locality preserving projections (LPP) and their corresponding kernel versions can be seen as special cases. For high-dimensional data, we can give a low-dimensional embedding result for both discriminating multi-class sub-manifolds and preserving local manifold structure. Experiments show that our algorithms can significantly improve the accuracy rates of the corresponding supervised and unsupervised approaches.
knowledge discovery and data mining | 2010
Furu Wei; Shixia Liu; Yangqiu Song; Shimei Pan; Michelle X. Zhou; Weihong Qian; Lei Shi; Li Tan; Qiang Zhang
In this paper, we present a novel exploratory visual analytic system called TIARA (Text Insight via Automated Responsive Analytics), which combines text analytics and interactive visualization to help users explore and analyze large collections of text. Given a collection of documents, TIARA first uses topic analysis techniques to summarize the documents into a set of topics, each of which is represented by a set of keywords. In addition to extracting topics, TIARA derives time-sensitive keywords to depict the content evolution of each topic over time. To help users understand the topic-based summarization results, TIARA employs several interactive text visualization techniques to explain the summarization results and seamlessly link such results to the original text. We have applied TIARA to several real-world applications, including email summarization and patient record analysis. To measure the effectiveness of TIARA, we have conducted several experiments. Our experimental results and initial user feedback suggest that TIARA is effective in aiding users in their exploratory text analytic tasks.
international joint conference on artificial intelligence | 2011
Yangqiu Song; Haixun Wang; Zhongyuan Wang; Hongsong Li; Weizhu Chen
Most text mining tasks, including clustering and topic detection, are based on statistical methods that treat text as bags of words. Semantics in the text is largely ignored in the mining process, and mining results often have low interpretability. One particular challenge faced by such approaches lies in short text understanding, as short texts lack enough content from which statistical conclusions can be drawn easily. In this paper, we improve text understanding by using a probabilistic knowledgebase that is as rich as our mental world in terms of the concepts (of worldly facts) it contains. We then develop a Bayesian inference mechanism to conceptualize words and short text. We conducted comprehensive experiments on conceptualizing textual terms, and clustering short pieces of text such as Twitter messages. Compared to purely statistical methods such as latent semantic topic modeling or methods that use existing knowledge-bases (e.g., WordNet, Freebase and Wikipedia), our approach brings significant improvements in short text understanding as reflected by the clustering accuracy.
knowledge discovery and data mining | 2010
Jianwen Zhang; Yangqiu Song; Changshui Zhang; Shixia Liu
Mining cluster evolution from multiple correlated time-varying text corpora is important in exploratory text analytics. In this paper, we propose an approach called evolutionary hierarchical Dirichlet processes (EvoHDP) to discover interesting cluster evolution patterns from such text data. We formulate the EvoHDP as a series of hierarchical Dirichlet processes~(HDP) by adding time dependencies to the adjacent epochs, and propose a cascaded Gibbs sampling scheme to infer the model. This approach can discover different evolving patterns of clusters, including emergence, disappearance, evolution within a corpus and across different corpora. Experiments over synthetic and real-world multiple correlated time-varying data sets illustrate the effectiveness of EvoHDP on discovering cluster evolution patterns.
knowledge discovery and data mining | 2012
Xueqing Liu; Yangqiu Song; Shixia Liu; Haixun Wang
Taxonomies, especially the ones in specific domains, are becoming indispensable to a growing number of applications. State-of-the-art approaches assume there exists a text corpus to accurately characterize the domain of interest, and that a taxonomy can be derived from the text corpus using information extraction techniques. In reality, neither assumption is valid, especially for highly focused or fast-changing domains. In this paper, we study a challenging problem: Deriving a taxonomy from a set of keyword phrases. A solution can benefit many real life applications because i) keywords give users the flexibility and ease to characterize a specific domain; and ii) in many applications, such as online advertisements, the domain of interest is already represented by a set of keywords. However, it is impossible to create a taxonomy out of a keyword set itself. We argue that additional knowledge and contexts are needed. To this end, we first use a general purpose knowledgebase and keyword search to supply the required knowledge and context. Then we develop a Bayesian approach to build a hierarchical taxonomy for a given set of keywords. We reduce the complexity of previous hierarchical clustering approaches from O(n2 log n) to O(n log n), so that we can derive a domain specific taxonomy from one million keyword phrases in less than an hour. Finally, we conduct comprehensive large scale experiments to show the effectiveness and efficiency of our approach. A real life example of building an insurance-related query taxonomy illustrates the usefulness of our approach for specific domains.
european conference on machine learning | 2008
Yangqiu Song; Wen-Yen Chen; Hongjie Bai; Chih-Jen Lin; Edward Y. Chang
Spectral clustering algorithm has been shown to be more effective in finding clusters than most traditional algorithms. However, spectral clustering suffers from a scalability problem in both memory use and computational time when a dataset size is large. To perform clustering on large datasets, we propose to parallelize both memory use and computation on distributed computers. Through an empirical study on a large document dataset of 193,844 data instances and a large photo dataset of 637,137, we demonstrate that our parallel algorithm can effectively alleviate the scalability problem.
ACM Transactions on Intelligent Systems and Technology | 2012
Shixia Liu; Michelle X. Zhou; Shimei Pan; Yangqiu Song; Weihong Qian; Weijia Cai; Xiaoxiao Lian
We are building an interactive visual text analysis tool that aids users in analyzing large collections of text. Unlike existing work in visual text analytics, which focuses either on developing sophisticated text analytic techniques or inventing novel text visualization metaphors, ours tightly integrates state-of-the-art text analytics with interactive visualization to maximize the value of both. In this article, we present our work from two aspects. We first introduce an enhanced, LDA-based topic analysis technique that automatically derives a set of topics to summarize a collection of documents and their content evolution over time. To help users understand the complex summarization results produced by our topic analysis technique, we then present the design and development of a time-based visualization of the results. Furthermore, we provide users with a set of rich interaction tools that help them further interpret the visualized results in context and examine the text collection from multiple perspectives. As a result, our work offers three unique contributions. First, we present an enhanced topic modeling technique to provide users with a time-sensitive and more meaningful text summary. Second, we develop an effective visual metaphor to transform abstract and often complex text summarization results into a comprehensible visual representation. Third, we offer users flexible visual interaction tools as alternatives to compensate for the deficiencies of current text summarization techniques. We have applied our work to a number of text corpora and our evaluation shows promise, especially in support of complex text analyses.
Pattern Recognition | 2009
Feiping Nie; Shiming Xiang; Yangqiu Song; Changshui Zhang
Supervised dimensionality reduction with tensor representation has attracted great interest in recent years. It has been successfully applied to problems with tensor data, such as image and video recognition tasks. However, in the tensor-based methods, how to select the suitable dimensions is a very important problem. Since the number of possible dimension combinations exponentially increases with respect to the order of tensor, manually selecting the suitable dimensions becomes an impossible task in the case of high-order tensor. In this paper, we aim at solving this important problem and propose an algorithm to extract the optimal dimensionality for local tensor discriminant analysis. Experimental results on a toy example and real-world data validate the effectiveness of the proposed method.