Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yangyang Bian is active.

Publication


Featured researches published by Yangyang Bian.


Journal of Proteomics | 2014

An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome

Yangyang Bian; Chunxia Song; Kai Cheng; Mingming Dong; Fangjun Wang; Junfeng Huang; Deguang Sun; Liming Wang; Mingliang Ye; Hanfa Zou

UNLABELLED Protein phosphorylation is one of the most common post-translational modifications. It plays key roles in regulating diverse biological processes of liver tissues. To better understand the role of protein phosphorylation in liver functions, it is essential to perform in-depth phosphoproteome analysis of human liver. Here, an enzyme assisted reversed-phase-reversed-phase liquid chromatography (RP-RPLC) approach with both RPLC separations operated with optimized acidic mobile phase was developed. High orthogonal separation was achieved by trypsin digestion of the Glu-C generated peptides in the fractions collected from the first RPLC separation. The phosphoproteome coverage was further improved by using two types of instruments, i.e. TripleTOF 5600 and LTQ Orbitrap Velos. A total of 22,446 phosphorylation sites, corresponding to 6526 nonredundant phosphoproteins were finally identified from normal human liver tissues. Of these sites, 15,229 sites were confidently localized with Ascore≥13. This dataset was the largest phosphoproteome dataset of human liver. It can be a public resource for the liver research community and holds promise for further biology studies. BIOLOGICAL SIGNIFICANCE The enzyme assisted approach enabled the two RPLC separations operated both with optimized acidic mobile phases. The identifications from TripleTOF 5600 and Orbitrap Velos are highly complementary. The largest phosphoproteome dataset of human liver was generated.


Journal of Proteomics | 2013

A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis

Xu Wang; Yangyang Bian; Kai Cheng; Li-Fei Gu; Mingliang Ye; Hanfa Zou; Samuel Sai-Ming Sun; Jun-Xian He

Large-scale protein phosphorylation analysis by MS is emerging as a powerful tool in plant signal transduction research. However, our current understanding of the phosphorylation regulatory network in plants is still very limited. Here, we report on a proteome-wide profiling of phosphopeptides in nine-day-old Arabidopsis (Arabidopsis thaliana) seedlings by using an enrichment method combining the titanium (Ti(4+))-based IMAC and the RP-strong cation exchange (RP-SCX) biphasic trap column-based online RPLC. Through the duplicated RPLC-MS/MS analyses, we identified 5348 unique phosphopeptides for 2552 unique proteins. Among the phosphoproteins identified, 41% of them were first-time identified. Further evolutionary conservation and phosphorylation motif analyses of the phosphorylation sites discovered 100 highly conserved phosphorylation residues and identified 17 known and 14 novel motifs specific for Ser/Thr protein kinases. Gene ontology and pathway analyses revealed that many of the new identified phosphoproteins are important regulatory proteins that are involved in diverse biological processes, particularly in central metabolisms and cell signaling. Taken together, our results provided not only new insights into the complex phosphoregulatory network in plants but also important resources for future functional studies of protein phosphorylation in plant growth and development.


Journal of Proteome Research | 2012

A Comprehensive Differential Proteomic Study of Nitrate Deprivation in Arabidopsis Reveals Complex Regulatory Networks of Plant Nitrogen Responses

Xu Wang; Yangyang Bian; Kai Cheng; Hanfa Zou; Samuel Sai-Ming Sun; Jun-Xian He

Nitrogen (N) is an important nutrient and signal for plant growth and development. However, to date, our knowledge of how plants sense and transduce the N signals is very limited. To better understand the molecular mechanisms of plant N responses, we took two-dimensional gel-based proteomic and phosphoproteomic approaches to profile the proteins with abundance and phosphorylation state changes during nitrate deprivation and recovery in the model plant Arabidopsis thaliana. After 7-day-old seedlings were N-deprived for up to 48 h followed by 24 h recovery, a total of 170 and 38 proteins were identified with significant changes in abundance and phosphorylation state, respectively. Bioinformatic analyses implicate these proteins in diverse cellular processes including N and protein metabolisms, photosynthesis, cytoskeleton, redox homeostasis, and signal transduction. Functional studies of the selected nitrate-responsive proteins indicate that the proteasome regulatory subunit RPT5a and the cytoskeleton protein Tubulin alpha-6 (TUA6) play important roles in plant nitrate responses by regulating plant N use efficiency (NUE) and low nitrate-induced anthocyanin biosynthesis, respectively. In conclusion, our study provides novel insights into plant responses to nitrate at the proteome level, which are expected to be highly useful for dissecting the N response pathways in higher plants and for improving plant NUE.


Analytical Chemistry | 2013

Monolithic Capillary Column Based Glycoproteomic Reactor for High-Sensitive Analysis of N-Glycoproteome

Jing Liu; Fangjun Wang; Hui Lin; Jun Zhu; Yangyang Bian; Kai Cheng; Hanfa Zou

Despite the importance of protein N-glycosylation in a series of biological processes, in-depth characterization of protein glycosylation is still a challenge due to the high complexity of biological samples and the lacking of highly sensitive detection technologies. We developed a monolithic capillary column based glycoproteomic reactor enabling high-sensitive mapping of N-glycosylation sites from minute amounts of sample. Unlike the conventional proteomic reactors with only strong-cation exchange or hydrophilic-interaction chromatography columns, this novel glycoproteomic reactor was composed of an 8 cm long C12 hydrophobic monolithic capillary column for protein digestion and a 6 cm long organic-silica hybrid hydrophilic monolithic capillary column for glycopeptides enrichment and deglycosylation, which could complete whole-sample preparation including protein purification/desalting, tryptic digestion, enrichment, and deglycosylation of glycopeptides within about 3 h. The developed reactor exhibited high detection sensitivity in mapping of N-glycosylation sites by detection limit of horseradish peroxidase as low as 2.5 fmol. This reactor also demonstrated the ability in complex sample analysis, and in total, 486 unique N-glycosylation sites were reliably mapped in three replicate analyses of a protein sample extracted from ∼10(4) HeLa cells.


Journal of Proteome Research | 2012

Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.

Yangyang Bian; Mingliang Ye; Chunxia Song; Kai Cheng; Chunli Wang; Xiaoluan Wei; Jun Zhu; Rui Chen; Fangjun Wang; Hanfa Zou

Complete coverage of all phosphorylation sites in a proteome is the ultimate goal for large-scale phosphoproteome analysis. However, only making use of one protease trypsin for protein digestion cannot cover all phosphorylation sites, because not all tryptic phosphopeptides are detectable in MS. To further increase the phosphoproteomics coverage of HeLa cells, we proposed a tandem digestion approach by using two different proteases. By combining the data set of the first Glu-C digestion and the second trypsin digestion, the tandem digestion approach resulted in the identification of 8062 unique phosphopeptides and 8507 phosphorylation sites in HeLa cells. The conventional trypsin digestion approach resulted in the identification of 3891 unique phosphopeptides and 4647 phosphorylation sites. It was found that the phosphorylation sites identified from the above two approaches were highly complementary. By combining above two data sets, in total we identified 10899 unique phosphopeptides and 11262 phosphorylation sites, corresponding to 3437 unique phosphoproteins with FDR < 1% at peptide level. We also compared the kinase motifs extracted from trypsin, Glu-C, or a second trypsin digestion data sets. It was observed that basophilic motifs were more frequently found in the trypsin and the second trypsin digestion data sets, and the acidic motifs were more frequently found in the Glu-C digestion data set. These results demonstrated that our tandem digestion approach is a good complement to the conventional trypsin digestion approach for improving the phosphoproteomics analysis coverage of HeLa cells.


Scientific Reports | 2013

Global Screening of CK2 Kinase Substrates by an Integrated Phosphoproteomics Workflow

Yangyang Bian; Mingliang Ye; Chunli Wang; Kai Cheng; Chunxia Song; Mingming Dong; Yanbo Pan; Hongqiang Qin; Hanfa Zou

Due to its constitutive activity and ubiquitous distribution, CK2 is the most pleiotropic kinase among the individual members of the protein kinase superfamily. Identification of CK2 substrates is vital to decipher its role in biological processes. However, only a limited number of CK2 substrates were identified so far. In this study, we developed an integrated phosphoproteomics workflow to identify the CK2 substrates in large scale. First, in vitro kinase reactions with immobilized proteomes were combined with quantitative phosphoproteomics to identify in vitro CK2 phosphorylation sites, which leaded to identification of 988 sites from 581 protein substrates. To reduce false positives, we proposed an approach by comparing these in vitro sites with the public databases that collect in vivo phosphorylation sites. After the removal of the sites that were excluded in the databases, 605 high confident CK2 sites corresponding to 356 proteins were retained. The CK2 substrates identified in this study were based on the discovery mode, in which an unbiased overview of CK2 substrates was provided. Our result revealed that CK2 substrates were significantly enriched in the spliceosomal proteins, indicating CK2 might regulate the functions of spliceosome.


Journal of Proteome Research | 2012

Depletion of acidic phosphopeptides by SAX to improve the coverage for the detection of basophilic kinase substrates.

Mingming Dong; Mingliang Ye; Kai Cheng; Chunxia Song; Yanbo Pan; Chunli Wang; Yangyang Bian; Hanfa Zou

The Ser/Thr protein kinases fall into three major subgroups, pro-directed, basophilic, and acidophilic, on the basis of the types of substrate sequences that they preferred. Despite many phosphoproteomics efforts that have been taken for global profiling of phosphopeptides, methodologies focusing on analyzing a particular type of kinase substrates have seldom been reported. Selective enrichment of phosphopeptides from basophilic kinase substrates is difficult because basophilic motifs are cleaved by trypsin during digestion. In this study, we develop a negative enrichment strategy to enhance the identification of basophilic kinase substrates. This method is based on an observation that high pH strong anion exchange (SAX) chromatography can separate tryptic phosphopeptides according to the number of acidic amino acidic residues that they have. Thus, SAX was applied to deplete acidic phosphopeptides from the phosphopeptide mixture, which improved the coverage for the detection of basophilic kinase substrates. The SAX depletion approach was further combined with online SCX-RP separation for large-scale analysis of mouse liver phosphoproteome, which resulted in the identification of 6944 phosphorylated sites. It was found that motifs associated with basophilic kinases prevail for these identified phosphorylated sites.


Journal of Proteomics | 2013

In-depth research of multidrug resistance related cell surface glycoproteome in gastric cancer

Kai Li; Zhen Sun; Jianyong Zheng; Yuanyuan Lu; Yangyang Bian; Mingliang Ye; Xin Wang; Yongzhan Nie; Hanfa Zou; Daiming Fan

UNLABELLED Human gastric cancer is a big public health problem. Multidrug resistance is a main obstacle to successful chemotherapeutic treatment in gastric cancers and the underlying mechanism is not clear. Glycosylation, one of the most important post translational modifications of proteins, plays a vital role in diverse aspects of tumor progression. In the present study, we applied two multidrug resistance cell lines and their parental drug sensitive gastric cancer cell line to a modified cell surface capturing strategy with triplex labeling to characterize MDR related cell surface glycoproteome. Finally, 56 cell membrane glycoproteins were successfully identified via combination of identification by glycopeptides and quantitation by non-glycopeptides, and 11 of them were found to be differentially expressed with the same trend in both drug resistant cell lines compared with that in sensitive cell line. The further analysis by western blot and in vitro drug sensitivity assay demonstrated that our approach is reliable and accurate and suggested that these glycoproteins may represent as biomarkers for multidrug resistance in gastric cancer. BIOLOGICAL SIGNIFICANCE In this study, we performed a cell surface glycoproteomics research of multidrug resistance in gastric cancer using a modified CSC approach. Totally we identified and quantified 11 membrane N-glycoproteins which were significantly changed in MDR gastric cancer cells. These glycoproteins are quite possible to be biomarkers for predicting MDR or key regulators for targeted therapy, and are also helpful for better interpreting the sophisticated mechanisms of MDR in gastric cancer. In addition to that, this approach used in this study can be well applied to screen aberrantly glycosylated biomarkers associated with other malignant phenotypes of various kinds of cancers.


Journal of Proteome Research | 2014

Large-Scale Quantification of Single Amino-Acid Variations by a Variation-Associated Database Search Strategy

Chunxia Song; Fangjun Wang; Kai Cheng; Xiaoluan Wei; Yangyang Bian; K. F. Wang; Yexiong Tan; Wang H; Mingliang Ye; Hanfa Zou

Global quantification of the single amino-acid variations (SAAVs) is essential to investigate the roles of SAAVs in disease progression. However, few efforts have been made on this issue due to the lack of high -throughput approach. Here we presented a strategy by integration of the stable isotope dimethyl labeling with variation-associated database search to globally quantify the SAAVs at the first time. A protein database containing 87,745 amino acid variant sequences and 73,910 UniProtKB/Swiss-Prot canonical protein entries was constructed for database search, and higher energy collisional dissociation combined with collision-induced dissociation fragmentation modes were applied to improve the quantification coverage of SAAVs. Compared with target proteomics in which only a few sites could be quantified, as many as 282 unique SAAVs sites were quantified between hepatocellular carcinoma (HCC) and normal human liver tissues by our strategy. The variation rates in different samples were evaluated, and some interesting SAAVs with significant increase normalized quantification ratios, such as T1406N in CPS1 and S197R in HTATIP2, were observed to highly associate with HCC progression. Therefore, the newly developed strategy enables the large-scale comparative analysis of variations at the protein level and holds a promising future in the research related to variations.


Analytical Chemistry | 2014

Integration of Cell Lysis, Protein Extraction, and Digestion into One Step for Ultrafast Sample Preparation for Phosphoproteome Analysis

Fangjie Liu; Mingliang Ye; Yanbo Pan; Yi Zhang; Yangyang Bian; Zhen Sun; Jun Zhu; Kai Cheng; Hanfa Zou

Conventional sample preparation protocols for phosphoproteome analysis require multiple time-consuming and labor-intensive steps, including cell lysis, protein extraction, protein digestion, and phosphopeptide enrichment. In this study, we found that the presence of a large amount of trypsin in the sample did not interfere with phosphopeptide enrichment and subsequent LC-MS/MS analysis. Taking advantage of fast digestion achieved with high trypsin-to-protein ratio, we developed a novel concurrent lysis-digestion method for phosphoproteome analysis. In this method, the harvested cells were first placed in a lysis buffer containing a huge amount of trypsin. After ultrasonication, the cells were lysed and the proteins were efficiently digested into peptides within one step. Thereafter, tryptic digest was subjected to phosphopeptide enrichment, in which unphosphorylated peptides, trypsin, and other components incompatible with LC-MS/MS analysis were removed. Compared with conventional methods, better phosphoproteome coverage was achieved in this new one-step method. Because protein solubilization and cell lysis were facilitated by fast protein digestion, the complete transformation of cell pellets into the peptide mixture could be finished within 25 min, while it would take at least 16 h for conventional methods. Hence, our method, which integrated cell lysis, protein extraction, and protein digestion into one step, is rapid and convenient. It is expected to have broad applications in phosphoproteomics analysis.

Collaboration


Dive into the Yangyang Bian's collaboration.

Top Co-Authors

Avatar

Hanfa Zou

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Mingliang Ye

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Kai Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingming Dong

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Chunxia Song

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Hongqiang Qin

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Fangjun Wang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Jing Dong

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Chunli Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Zhu

Dalian Institute of Chemical Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge