Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanina Balabanova is active.

Publication


Featured researches published by Yanina Balabanova.


Nature Genetics | 2014

Evolution and transmission of drug-resistant tuberculosis in a Russian population

Nicola Casali; Nikolayevskyy; Yanina Balabanova; Harris; Olga Ignatyeva; Irina Kontsevaya; Jukka Corander; Josephine M. Bryant; Julian Parkhill; Sergey Nejentsev; Rolf D. Horstmann; Timothy Brown; Francis Drobniewski

The molecular mechanisms determining the transmissibility and prevalence of drug-resistant tuberculosis in a population were investigated through whole-genome sequencing of 1,000 prospectively obtained patient isolates from Russia. Two-thirds belonged to the Beijing lineage, which was dominated by two homogeneous clades. Multidrug-resistant (MDR) genotypes were found in 48% of isolates overall and in 87% of the major clades. The most common rpoB mutation was associated with fitness-compensatory mutations in rpoA or rpoC, and a new intragenic compensatory substitution was identified. The proportion of MDR cases with extensively drug-resistant (XDR) tuberculosis was 16% overall, with 65% of MDR isolates harboring eis mutations, selected by kanamycin therapy, which may drive the expansion of strains with enhanced virulence. The combination of drug resistance and compensatory mutations displayed by the major clades confers clinical resistance without compromising fitness and transmissibility, showing that, in addition to weaknesses in the tuberculosis control program, biological factors drive the persistence and spread of MDR and XDR tuberculosis in Russia and beyond.


PLOS Genetics | 2008

Genetic Association and Expression Studies Indicate a Role of Toll-Like Receptor 8 in Pulmonary Tuberculosis

Sonia Davila; Martin L. Hibberd; Ranjeeta Hari Dass; Hazel E. E. Wong; Edhyana Sahiratmadja; Carine Bonnard; Bachti Alisjahbana; Jeffrey S. Szeszko; Yanina Balabanova; Francis Drobniewski; Reinout van Crevel; Esther van de Vosse; Sergey Nejentsev; Tom H. M. Ottenhoff; Mark Seielstad

Despite high rates of exposure, only 5–10% of people infected with Mycobacterium tuberculosis will develop active tuberculosis (TB) disease, suggesting a significant role for genetic variation in the human immune response to this infection. Here, we studied TB association and expression of 18 genes involved in the Toll-like receptor (TLR) pathways. Initially, we genotyped 149 sequence polymorphisms in 375 pulmonary TB patients and 387 controls from Indonesia. We found that four polymorphisms in the TLR8 gene on chromosome X showed evidence of association with TB susceptibility in males, including a non-synonymous polymorphism rs3764880 (Met1Val; P = 0.007, odds ratio (OR) = 1.8, 95% c.i. = 1.2–2.7). We genotyped these four TLR8 polymorphisms in an independent collection of 1,837 pulmonary TB patients and 1,779 controls from Russia and again found evidence of association in males (for rs3764880 P = 0.03, OR = 1.2, 95% c.i. = 1.02–1.48). Combined evidence for association is P = 1.2×10−3–6×10−4. In addition, a quantitative PCR analysis indicated that TLR8 transcript levels are significantly up-regulated in patients during the acute phase of disease (P = 9.36×10−5), relative to baseline levels following successful chemotherapy. A marked increase in TLR8 protein expression was also observed directly in differentiated macrophages upon infection with M. bovis bacille Calmette-Guérin (BCG). Taken together, our results provide evidence, for the first time, of a role for the TLR8 gene in susceptibility to pulmonary TB across different populations.


Genome Research | 2012

Microevolution of extensively drug-resistant tuberculosis in Russia.

Nicola Casali; Nikolayevskyy; Yanina Balabanova; Olga Ignatyeva; Irina Kontsevaya; Harris; Stephen D. Bentley; Julian Parkhill; Sergey Nejentsev; Sven Hoffner; Rolf D. Horstmann; Timothy Brown; Francis Drobniewski

Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72% belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted.


Thorax | 2005

Rates of drug resistance and risk factor analysis in civilian and prison patients with tuberculosis in Samara Region, Russia

M Ruddy; Yanina Balabanova; C. Graham; Ivan Fedorin; N Malomanova; E Elisarova; S Kuznetznov; G. I. Gusarova; S Zakharova; Alexander Melentyev; E Krukova; V Golishevskaya; V Erokhin; I Dorozhkova; Francis Drobniewski

Background: Tuberculosis (TB) and HIV rates continue to escalate in Russia, but true rates for drug resistance, especially multidrug resistant tuberculosis (MDR TB), are unknown. A study was conducted with the aims of identifying first line drug resistance, both in the civilian and prison sectors, for new and previously treated cases; and risk factors for the development of drug resistance. Methods: A cross sectional survey was undertaken of 600 patients (309 civilians, 291 prisoners) with bacteriologically confirmed pulmonary TB over a 1 year period during 2001–2 in Samara Oblast, Russia. Results: The prevalence of isoniazid, rifampicin, streptomycin, ethambutol and pyrazinamide resistance in new TB cases (civilian and prison patients) was 38.0%, 25.2%, 34.6%, 14.7%, and 7.2%, respectively. The prevalence of MDR TB was 22.7%, 19.8%, and 37.3% in all new cases, new civilian cases, and new prison cases, respectively, with an overall prevalence of 45.5% and 55.3% in previously treated cases. Factors associated with resistance included previous TB treatment for more than 4 weeks, smoking (for isoniazid resistance), the presence of cavitations on the chest radiograph, and imprisonment. HIV was not associated with resistance in all patients. The rates of resistance were significantly higher in prisoners, with rate ratios (RR) of 1.9 (95% CI 1.1 to 3.2) for MDR TB, 1.9 (95% CI 1.1 to 3.2) for rifampicin, and 1.6 (95% CI 1.0 to 2.6) for isoniazid. Conclusions: Rates of first line drug resistance are high, particularly in prisoners and previously treated cases. TB control programmes should initially focus on standardised treatment to maximise cure, combined with measures to reduce institutional TB spread (particularly in prisons) coupled with early diagnosis of MDR TB to reduce the spread and development of resistance.


Nature Genetics | 2012

Common variants at 11p13 are associated with susceptibility to tuberculosis

Thorsten Thye; Ellis Owusu-Dabo; Fredrik O. Vannberg; R. van Crevel; James Curtis; E. Sahiratmadja; Yanina Balabanova; Christa Ehmen; Birgit Muntau; Gerd Ruge; J. Sievertsen; John O. Gyapong; Vladyslav Nikolayevskyy; Philip C. Hill; Giorgio Sirugo; Francis Drobniewski; E. van de Vosse; Melanie J. Newport; Bachti Alisjahbana; Sergey Nejentsev; Tom H. M. Ottenhoff; Adrian V. S. Hill; Rolf D. Horstmann; Christian G. Meyer

After imputation of data from the 1000 Genomes Project into a genome-wide dataset of Ghanaian individuals with tuberculosis and controls, we identified a resistance locus on chromosome 11p13 downstream of the WT1 gene (encoding Wilms tumor 1). The strongest signal was obtained at the rs2057178 SNP (P = 2.63 × 10−9). Replication in Gambian, Indonesian and Russian tuberculosis case-control study cohorts increased the significance level for the association with this SNP to P = 2.57 × 10−11.


Emerging Infectious Diseases | 2002

Rifampin- and Multidrug-Resistant Tuberculosis in Russian Civilians and Prison Inmates: Dominance of the Beijing Strain Family

Francis Drobniewski; Yanina Balabanova; M Ruddy; Laura Weldon; Katya Jeltkova; Tim Brown; Nadezdna Malomanova; Elvira Elizarova; Alexander Melentyey; Ebgeny Mutovkin; Svetlana Zhakharova; Ivan Fedorin

Consecutive patient cultures (140) of Mycobacteriium tuberculosis were collected from five Russian civilian and prison tuberculosis laboratories and analyzed for rifampin (rpoB) and isoniazid resistance (inhA, katG, ahpC); transmission of Beijing family isolates; and the importance of prison and previous therapy in drug resistance. Rifampin, isoniazid, and multidrug resistance occurred in 58.2%, 51.6%, and 44.7% of cultures, respectively; 80% of prison cultures were rifampin resistant. Spoligotyping and variable number tandem repeat (VNTR) fingerprinting divided the isolates into 43 groups. Spoligotyping demonstrated that a high proportion (68.1%) of patients were infected with Beijing family strains and that most (69.1%) were rifampin resistant; the highest proportion (81.6%) occurred in prison. One VNTR subgroup (42435) comprised 68 (72.3%) of the Beijing isolates with a small number of IS6110 types; 50 (73.5%) were rifampin resistant. Rifampin-resistant Beijing isolates are dominant within the patient population, especially among prisoners, and threaten treatment programs.


PLOS ONE | 2011

Communicable Diseases Prioritized for Surveillance and Epidemiological Research: Results of a Standardized Prioritization Procedure in Germany, 2011

Yanina Balabanova; Andreas Gilsdorf; Silke Buda; Reinhard Burger; Tim Eckmanns; Barbara Gärtner; Uwe Groß; Walter Haas; Osamah Hamouda; Johannes Hübner; Thomas Jänisch; Manfred Kist; Michael H. Kramer; Thomas Ledig; Martin Mielke; Matthias Pulz; Klaus Stark; Norbert Suttorp; Uta Ulbrich; Ole Wichmann; Gérard Krause

Introduction To establish strategic priorities for the German national public health institute (RKI) and guide the institutes mid-term strategic decisions, we prioritized infectious pathogens in accordance with their importance for national surveillance and epidemiological research. Methods We used the Delphi process with internal (RKI) and external experts and a metric-consensus approach to score pathogens according to ten three-tiered criteria. Additional experts were invited to weight each criterion, leading to the calculation of a median weight by which each score was multiplied. We ranked the pathogens according to the total weighted score and divided them into four priority groups. Results 127 pathogens were scored. Eighty-six experts participated in the weighting; “Case fatality rate” was rated as the most important criterion. Twenty-six pathogens were ranked in the highest priority group; among those were pathogens with internationally recognised importance (e.g., Human Immunodeficiency Virus, Mycobacterium tuberculosis, Influenza virus, Hepatitis C virus, Neisseria meningitides), pathogens frequently causing large outbreaks (e.g., Campylobacter spp.), and nosocomial pathogens associated with antimicrobial resistance. Other pathogens in the highest priority group included Helicobacter pylori, Respiratory Syncytial Virus, Varicella zoster virus and Hantavirus. Discussion While several pathogens from the highest priority group already have a high profile in national and international health policy documents, high scores for other pathogens (e.g., Helicobacter pylori, Respiratory syncytial virus or Hantavirus) indicate a possible under-recognised importance within the current German public health framework. A process to strengthen respective surveillance systems and research has been started. The prioritization methodology has worked well; its modular structure makes it potentially useful for other settings.


BMC Medical Genetics | 2012

A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians

Eileen Png; Bachti Alisjahbana; Edhyana Sahiratmadja; Sangkot Marzuki; Ron Nelwan; Yanina Balabanova; Vladyslav Nikolayevskyy; Francis Drobniewski; Sergey Nejentsev; Iskandar Adnan; Esther van de Vosse; Martin L. Hibberd; Reinout van Crevel; Tom H. M. Ottenhoff; Mark Seielstad

BackgroundThere is reason to expect strong genetic influences on the risk of developing active pulmonary tuberculosis (TB) among latently infected individuals. Many of the genome wide linkage and association studies (GWAS) to date have been conducted on African populations. In order to identify additional targets in genetically dissimilar populations, and to enhance our understanding of this disease, we performed a multi-stage GWAS in a Southeast Asian cohort from Indonesia.MethodsIn stage 1, we used the Affymetrix 100 K SNP GeneChip marker set to genotype 259 Indonesian samples. After quality control filtering, 108 cases and 115 controls were analyzed for association of 95,207 SNPs. In stage 2, we attempted validation of 2,453 SNPs with promising associations from the first stage, in 1,189 individuals from the same Indonesian cohort, and finally in stage 3 we selected 251 SNPs from this stage to test TB association in an independent Caucasian cohort (n = 3,760) from Russia.ResultsOur study suggests evidence of association (P = 0.0004-0.0067) for 8 independent loci (nominal significance P < 0.05), which are located within or near the following genes involved in immune signaling: JAG1, DYNLRB2, EBF1, TMEFF2, CCL17, HAUS6, PENK and TXNDC4.ConclusionsMechanisms of immune defense suggested by some of the identified genes exhibit biological plausibility and may suggest novel pathways involved in the host containment of infection with TB.


BMC Clinical Pathology | 2009

Performance of the Genotype® MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation

Vladyslav Nikolayevskyy; Yanina Balabanova; Tatyana Simak; Nadezhda Malomanova; Ivan Fedorin; Francis Drobniewski

Background Russia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia. Results We performed an evaluation of the GenoType® MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system. Interpretable GenoType® MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the rpoB gene and codon 315 of the katG gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance). Conclusion High sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType® MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.BackgroundRussia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia.ResultsWe performed an evaluation of the GenoType® MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system.Interpretable GenoType® MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the rpoB gene and codon 315 of the katG gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance).ConclusionHigh sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType® MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.


Nature Genetics | 2015

Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration

James Curtis; Yang Luo; Helen L. Zenner; Delphine Cuchet-Lourenço; Changxin Wu; Kitty Lo; Mailis Maes; Ali Alisaac; Emma Stebbings; Jimmy Z. Liu; Liliya Kopanitsa; Olga Ignatyeva; Yanina Balabanova; Vladyslav Nikolayevskyy; Ingelore Baessmann; Thorsten Thye; Christian G. Meyer; Peter Nürnberg; Rolf D. Horstmann; Francis Drobniewski; Vincent Plagnol; Jeffrey C. Barrett; Sergey Nejentsev

Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis–infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB.

Collaboration


Dive into the Yanina Balabanova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Ignatyeva

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf D. Horstmann

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Ruddy

Public health laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge