Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaniv Brandvain is active.

Publication


Featured researches published by Yaniv Brandvain.


Nature Genetics | 2013

The Capsella rubella genome and the genomic consequences of rapid mating system evolution

Tanja Slotte; Khaled M. Hazzouri; J. Arvid Ågren; Daniel Koenig; Florian Maumus; Ya-Long Guo; Kim A. Steige; Adrian E. Platts; Juan S. Escobar; L. Killian Newman; Wei Wang; Terezie Mandáková; Emilio Vello; Lisa M. Smith; Stefan R. Henz; Joshua G. Steffen; Shohei Takuno; Yaniv Brandvain; Graham Coop; Peter Andolfatto; Tina T. Hu; Mathieu Blanchette; Richard M. Clark; Hadi Quesneville; Magnus Nordborg; Brandon S. Gaut; Martin A. Lysak; Jerry Jenkins; Jane Grimwood; Jarrod Chapman

The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.


The American Naturalist | 2005

Divergent Mating Systems and Parental Conflict as a Barrier to Hybridization in Flowering Plants

Yaniv Brandvain; David Haig

Parental conflicts can lead to antagonistic coevolution of the sexes and of parental genomes. Within a population, the resulting antagonistic effects should balance, but crosses between populations can reveal conflict. Parental conflict is less intense in self‐pollinating plants than in outcrossers because outcrossing plants are pollinated by multiple pollen donors unrelated to the seed parent, while a self‐pollinating plant is primarily pollinated by one individual (itself). Therefore, in crosses between plants with differing mating systems, outcrossing parents are expected to “overpower” selfing parents. We call this the weak inbreeder/strong outbreeder (WISO) hypothesis. Prezygotically, such overpowering can alter pollination success, and we argue that our hypothesis explains a common pattern of unilateral incompatibility, in which pollen from self‐incompatible populations fertilizes ovules of self‐compatible individuals but the reciprocal cross fails. A postzygotic manifestation of overpowering is aberrant seed development due to parent‐of‐origin effects such as genomic imprinting. We evaluate evidence for the WISO hypothesis by reviewing published accounts of crosses between plants of different mating systems. Many, but not all, of such reports support our hypothesis. Since parental conflicts can perturb fertilization and development, such conflicts may strengthen reproductive barriers between populations, contributing to speciation.


PLOS Biology | 2014

Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology

Maria R. Servedio; Yaniv Brandvain; Sumit Dhole; Courtney L. Fitzpatrick; Emma E. Goldberg; Caitlin A. Stern; Jeremy Van Cleve; D. Justin Yeh

Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Library


PLOS Genetics | 2014

Speciation and introgression between Mimulus nasutus and Mimulus guttatus.

Yaniv Brandvain; Amanda M. Kenney; Lex E. Flagel; Graham Coop; Andrea L. Sweigart

Mimulus guttatus and M. nasutus are an evolutionary and ecological model sister species pair differentiated by ecology, mating system, and partial reproductive isolation. Despite extensive research on this system, the history of divergence and differentiation in this sister pair is unclear. We present and analyze a population genomic data set which shows that M. nasutus budded from a central Californian M. guttatus population within the last 200 to 500 thousand years. In this time, the M. nasutus genome has accrued genomic signatures of the transition to predominant selfing, including an elevated proportion of nonsynonymous variants, an accumulation of premature stop codons, and extended levels of linkage disequilibrium. Despite clear biological differentiation, we document genomic signatures of ongoing, bidirectional introgression. We observe a negative relationship between the recombination rate and divergence between M. nasutus and sympatric M. guttatus samples, suggesting that selection acts against M. nasutus ancestry in M. guttatus.


New Phytologist | 2015

The scope of Baker's law

John R. Pannell; Josh R. Auld; Yaniv Brandvain; Martin Burd; Jeremiah W. Busch; Pierre-Olivier Cheptou; Jeffrey K. Conner; Emma E. Goldberg; Alannie-Grace Grant; Dena L. Grossenbacher; Stephen M. Hovick; Boris Igic; Susan Kalisz; Theodora Petanidou; April M. Randle; Rafael Rubio de Casas; Anton Pauw; Jana C. Vamosi; Alice A. Winn

Bakers law refers to the tendency for species that establish on islands by long-distance dispersal to show an increased capacity for self-fertilization because of the advantage of self-compatibility when colonizing new habitat. Despite its intuitive appeal and broad empirical support, it has received substantial criticism over the years since it was proclaimed in the 1950s, not least because it seemed to be contradicted by the high frequency of dioecy on islands. Recent theoretical work has again questioned the generality and scope of Bakers law. Here, we attempt to discern where the idea is useful to apply and where it is not. We conclude that several of the perceived problems with Bakers law fall away when a narrower perspective is adopted on how it should be circumscribed. We emphasize that Bakers law should be read in terms of an enrichment of a capacity for uniparental reproduction in colonizing situations, rather than of high selfing rates. We suggest that Bakers law might be tested in four different contexts, which set the breadth of its scope: the colonization of oceanic islands, metapopulation dynamics with recurrent colonization, range expansions with recurrent colonization, and colonization through species invasions.


PLOS Genetics | 2013

Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella.

Yaniv Brandvain; Tanja Slotte; Khaled M. Hazzouri; Stephen I. Wright; Graham Coop

The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes) present in C. rubellas founder(s). Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubellas founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the transition to self-fertilization.


Evolution | 2009

Reversing Mother's Curse: Selection on Male Mitochondrial Fitness Effects

Michael J. Wade; Yaniv Brandvain

Many essential organelles and endosymbionts exhibit a strict matrilineal pattern of inheritance. The absence of paternal transmission of such extranuclear components is thought to preclude a response to selection on their effects on male viability and fertility. We overturn this dogma by showing that two mechanisms, inbreeding and kin selection, allow mitochondria to respond to selection on both male viability and fertility. Even modest levels of inbreeding allow such a response to selection when there are direct fitness effects of mitochondria on male fertility because inbreeding associates male fertility traits with mitochondrial matrilines. Male viability effects of mitochondria are also selectable whenever there are indirect fitness effects of males on the fitness of their sisters. When either of these effects is sufficiently strong, we show that there are conditions that allow the spread of mitochondria with direct effects that are harmful to females, contrary to standard expectation. We discuss the implications of our findings for the evolution of organelles and endosymbionts and genomic conflict.


Genetics | 2012

Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

Yaniv Brandvain; Graham Coop

Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers—alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis—present a potent selective pressure favoring the modification of the female recombination rate. Because recombination plays a central role in shaping patterns of variation within and among dyads, modifiers of the female recombination rate can function as potent suppressors or enhancers of female meiotic drive. We show that when female recombination modifiers are unlinked to female drivers, recombination modifiers that suppress harmful female drive can spread. By contrast, a recombination modifier tightly linked to a driver can increase in frequency by enhancing female drive. Our results predict that rapidly evolving female recombination rates, particularly around centromeres, should be a common outcome of meiotic drive. We discuss how selection to modify the efficacy of meiotic drive may contribute to commonly observed patterns of sex differences in recombination.


Genetics | 2009

The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization.

Yaniv Brandvain; Michael J. Wade

The transfer of mitochondrial genes to the nucleus is a recurrent and consistent feature of eukaryotic genome evolution. Although many theories have been proposed to explain such transfers, little relevant data exist. The observation that clonal and self-fertilizing plants transfer more mitochondrial genes to their nuclei than do outcrossing plants contradicts predictions of major theories based on nuclear recombination and leaves a gap in our conceptual understanding how the observed pattern of gene transfer could arise. Here, with a series of deterministic and stochastic simulations, we show how epistatic selection and relative mutation rates of mitochondrial and nuclear genes influence mitochondrial-to-nuclear gene transfer. Specifically, we show that when there is a benefit to having a mitochondrial gene present in the nucleus, but absent in the mitochondria, self-fertilization dramatically increases both the rate and the probability of gene transfer. However, absent such a benefit, when mitochondrial mutation rates exceed those of the nucleus, self-fertilization decreases the rate and probability of transfer. This latter effect, however, is much weaker than the former. Our results are relevant to understanding the probabilities of fixation when loci in different genomes interact.


Trends in Genetics | 2011

Demography, kinship, and the evolving theory of genomic imprinting

Yaniv Brandvain; Jeremy Van Cleve; Francisco Úbeda; Jon F. Wilkins

Genomic imprinting is the differential expression of an allele based on the parent of origin. Recent transcriptome-wide evaluations of the number of imprinted genes reveal complex patterns of imprinted expression among developmental stages and cell types. Such data demand a comprehensive evolutionary framework in which to understand the effect of natural selection on imprinted gene expression. We present such a framework for how asymmetries in demographic parameters and fitness effects can lead to the evolution of genomic imprinting and place recent theoretical advances in this framework. This represents a modern interpretation of the kinship theory, is well suited to studying populations with complex social interactions, and provides predictions which can be tested with forthcoming transcriptomic data. To understand the intricate phenotypic patterns that are emerging from the recent deluge of data, future investigations of genomic imprinting will require integrating evolutionary theory, transcriptomic data, developmental and functional genetics, and natural history.

Collaboration


Dive into the Yaniv Brandvain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham Coop

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Herman

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice A. Winn

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

April M. Randle

University of San Francisco

View shared research outputs
Researchain Logo
Decentralizing Knowledge