Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanjie He is active.

Publication


Featured researches published by Yanjie He.


Angewandte Chemie | 2016

Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

Ming He; Xinchang Pang; Xueqin Liu; Beibei Jiang; Yanjie He; Henry J. Snaith; Zhiqun Lin

Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3 NH3 PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4 :Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star-like poly(acrylic acid)-block-poly(ethylene oxide) (PAA-b-PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4 :Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use.


ACS Nano | 2016

In-Situ Crafting of ZnFe2O4 Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials

Beibei Jiang; Cuiping Han; Bo Li; Yanjie He; Zhiqun Lin

The ability to create a synergistic effect of nanostructure engineering and its hybridization with conductive carbonaceous material is highly desirable for attaining high-performance lithium ion batteries (LIBs). Herein, we judiciously crafted ZnFe2O4/carbon nanocomposites composed of ZnFe2O4 nanoparticles with an average size of 16 ± 5 nm encapsulated within the continuous carbon network as anode materials for LIBs. Such intriguing nanocomposites were yielded in situ via the pyrolysis-induced carbonization of polystyrene@poly(acrylic acid) (PS@PAA) core@shell nanospheres in conjunction with the formation of ZnFe2O4 nanoparticles through the thermal decomposition of ZnFe2O4 precursors incorporated within the PS@PAA nanospheres. By systematically varying the ZnFe2O4 content in the ZnFe2O4/carbon nanocomposites, the nanocomposite containing 79.3 wt % ZnFe2O4 was found to exhibit an excellent rate performance with high capacities of 1238, 1198, 1136, 1052, 926, and 521 mAh g(-1) at specific currents of 100, 200, 500, 1000, 2000, and 5000 mA g(-1), respectively. Moreover, cycling performance of the ZnFe2O4/carbon nanocomposite with 79.3 wt % ZnFe2O4 at specific currents of 200 mA g(-1) delivered an outstanding prolonged cycling stability for several hundred cycles.


Science | 2016

1D nanocrystals with precisely controlled dimensions, compositions, and architectures

Xinchang Pang; Yanjie He; Jaehan Jung; Zhiqun Lin

The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.


Nature Communications | 2017

Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

Ming He; Bo Li; Xun Cui; Beibei Jiang; Yanjie He; Yihuang Chen; Daniel O’Neil; Paul Szymanski; Mostafa A. EI-Sayed; Jinsong Huang; Zhiqun Lin

Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.


Journal of Materials Chemistry | 2015

Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer

Cuiping Han; Di Yang; Yingkui Yang; Beibei Jiang; Yanjie He; Mengye Wang; Ah-Young Song; Yan-Bing He; Baohua Li; Zhiqun Lin

By subjecting amorphous titanium dioxide (TiO2) colloidal spheres as a scaffold to a two-step external template-free hydrothermal treatment, anatase TiO2 hollow spheres with an average diameter of 410 nm and shell thickness of 65 nm were successfully yielded. Such hollow TiO2 nanostructures possessed a large surface area, abundant active sites and reduced Li ion diffusion path and thus were highly favorable for use in TiO2-based lithium ion batteries (LIB). Electrochemical measurements revealed that as-prepared TiO2 hollow spheres exhibited specific discharge capacities of 296, 185, 118, 66 and 37 mA h g−1 at 0.1 C, 1 C, 2 C, 5 C and 10 C, respectively. This is in sharp contrast to the considerably lower values obtained in TiO2 solid nanoparticles (i.e., 182, 119, 81, 43 18 mA h g−1 at discharge rates of 0.1 C, 1 C, 2 C, 5 C and 1 0 C, respectively). Interestingly, TiO2 hollow spheres showed a large irreversible capacity loss and relatively low cycling performance due to the residual chemisorbed water in TiO2 and hydroxyl groups present on the TiO2 surface. A solid electrolyte interface (SEI) layer composed primarily of Li2CO3, lithium alkyl carbonates and organic phosphates was thus formed on the surface of hollow TiO2 spheres, thereby leading to an increased internal cell impedance and the decreased rate and cycling performance. The subsequent high-temperature annealing effectively removed chemisorbed water and hydroxyls on the TiO2 surface. As a consequence, annealed TiO2 hollow spheres rendered markedly improved rate stability and cycle performance in the resulting TiO2-based LIBs. The specific discharge capacities at rates of 5 C and 10 C were 77 mA h g−1 and 50 mA h g−1, which are considerably larger than those obtained from as-prepared TiO2 hollow spheres. Moreover, compared to only 42.1% for as-prepared hollow TiO2 spheres, a capacity retention as high as 93.5% over 200 cycles at 1 C was achieved for annealed hollow TiO2 spheres.


Angewandte Chemie | 2015

An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic–Inorganic Nanocomposites

Hui Xu; Xinchang Pang; Yanjie He; Ming He; Jaehan Jung; Haiping Xia; Zhiqun Lin

We developed an unconventional route to produce uniform and intimately contacted semiconducting organic-inorganic nanocomposites for potential applications in thermoelectrics. By utilizing amphiphilic star-like PAA-b-PEDOT diblock copolymer as template, monodisperse PEDOT-functionalized lead telluride (PbTe) nanoparticles were crafted via the strong coordination interaction between PAA blocks of star-like PAA-b-PEDOT and the metal moieties of precursors (i.e., forming PEDOT-PbTe nanocomposites). As the inner PAA blocks are covalently connected to the outer PEDOT blocks, the PEDOT chains are intimately and permanently tethered on the PbTe nanoparticle surface, thereby affording a well-defined PEDOT/PbTe interface, which prevents the PbTe nanoparticles from aggregation, and more importantly promotes the long-term stability of PEDOT-PbTe nanocomposites. We envision that the template strategy is general and robust, and offers easy access to other conjugated polymer-inorganic semiconductor nanocomposites for use in a variety of applications.


Science Advances | 2015

A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish

Hui Xu; Yuci Xu; Xinchang Pang; Yanjie He; Jaehan Jung; Haiping Xia; Zhiqun Lin

Organic-inorganic 1D periodic necklace-like nanostructures are fabricated using confined synthesis of inorganic nanocrystals. Assembling nanoparticles into one-dimensional (1D) nanostructures with precisely controlled size and shape renders the exploration of new properties and construction of 1D miniaturized devices possible. The physical properties of such nanostructures depend heavily on the size, chemical composition, and surface chemistry of nanoparticle constituents, as well as the close proximity of adjacent nanoparticles within the 1D nanostructure. Chemical synthesis provides an intriguing alternative means of creating 1D nanostructures composed of self-assembled nanoparticles in terms of material diversity, size controllability, shape regularity, and low-cost production. However, this is an area where progress has been slower. We report an unconventional yet general strategy to craft an exciting variety of 1D nanonecklace-like nanostructures comprising uniform functional nanodiscs periodically assembled along a stretched flexible polymer chain by capitalizing on judiciously designed amphiphilic worm-like diblock copolymers as nanoreactors. These nanostructures can be regarded as organic-inorganic shish-kebabs, in which nanodisc kebabs are periodically situated on a stretched polymer shish. Simulations based on self-consistent field theory reveal that the formation of organic-inorganic shish-kebabs is guided by the self-assembled elongated star-like diblock copolymer constituents constrained on the highly stretched polymer chain.


Angewandte Chemie | 2015

Precisely Size‐Tunable Magnetic/Plasmonic Core/Shell Nanoparticles with Controlled Optical Properties

Di Yang; Xinchang Pang; Yanjie He; Yiquan Wang; Genxiang Chen; Wenzhong Wang; Zhiqun Lin

Star-like amphiphilic triblock copolymers were rationally designed and synthesized by combining two sequential atom-transfer radical polymerization reactions with a click reaction. Subsequently, a family of uniform magnetic/plasmonic core/shell nanoparticles was crafted by capitalizing on these triblock copolymers as nanoreactors. The diameter of the magnetic core and the thickness of the plasmonic shell could be independently and accurately controlled by varying the molecular weights (i.e., the chain lengths) of the inner and intermediate blocks of the star-like triblock copolymers, respectively. The surface plasmonic absorption of core/shell nanoparticles with different core diameters and shell thicknesses was systematically studied and theoretically modeled. This robust strategy provides easy access to a large variety of multifunctional nanoparticles with large lattice mismatches for use in optics, optoelectronics, catalysis, or bioimaging.


Journal of the American Chemical Society | 2017

Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties

Yihuang Chen; Di Yang; Young Jun Yoon; Xinchang Pang; Zewei Wang; Jaehan Jung; Yanjie He; Yeu Wei Harn; Ming He; Shuguang Zhang; Guangzhao Zhang; Zhiqun Lin

The ability to tailor the size and shape of nanoparticles (NPs) enables the investigation into the correlation between these parameters and optical, optoelectronic, electrical, magnetic, and catalytic properties. Despite several effective approaches available to synthesize NPs with a hollow interior, it remains challenging to have a general strategy for creating a wide diversity of high-quality hollow NPs with different dimensions and compositions on demand. Herein, we report on a general and robust strategy to in situ crafting of monodisperse hairy hollow noble metal NPs by capitalizing on rationally designed amphiphilic star-like triblock copolymers as nanoreactors. The intermediate blocks of star-like triblock copolymers can associate with metal precursors via strong interaction (i.e., direct coordination or electrostatic interaction), followed by reduction to yield hollow noble metal NPs. Notably, the outer blocks of star-like triblock copolymers function as ligands that intimately and permanently passivate the surface of hollow noble metal NPs (i.e., forming hairy permanently ligated hollow NPs with superior solubility in nonpolar solvents). More importantly, the diameter of the hollow interior and the thickness of the shell of NPs can be readily controlled. As such, the dimension-dependent optical properties of hollow NPs are scrutinized by combining experimental studies and theoretical modeling. The dye encapsulation/release studies indicated that hollow NPs may be utilized as attractive guest molecule nanocarriers. As the diversity of precursors are amenable to this star-like triblock copolymer nanoreactor strategy, it can conceptually be extended to produce a rich variety of hairy hollow NPs with different dimensions and functionalities for applications in catalysis, water purification, optical devices, lightweight fillers, and energy conversion and storage.


Nanoscale | 2013

Block copolymer/ferroelectric nanoparticle nanocomposites

Xinchang Pang; Yanjie He; Beibei Jiang; James Iocozzia; Lei Zhao; Hanzheng Guo; Jin Liu; Mufit Akinc; Nicola Bowler; Xiaoli Tan; Zhiqun Lin

Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.

Collaboration


Dive into the Yanjie He's collaboration.

Top Co-Authors

Avatar

Zhiqun Lin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xinchang Pang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Beibei Jiang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jaehan Jung

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yihuang Chen

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ming He

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Young Jun Yoon

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bo Li

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chaowei Feng

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zewei Wang

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge