Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanlong Li is active.

Publication


Featured researches published by Yanlong Li.


Blood | 2010

Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms

Alfonso Quintás-Cardama; Kris Vaddi; Phillip Liu; Taghi Manshouri; Jun Li; Peggy Scherle; Eian Caulder; Xiaoming Wen; Yanlong Li; Paul Waeltz; Mark Rupar; Timothy Burn; Yvonne Lo; Jennifer Kelley; Maryanne Covington; Stacey Shepard; James D. Rodgers; Patrick J. Haley; Hagop M. Kantarjian; Jordan S. Fridman; Srdan Verstovsek

Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice, establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation, half of those with essential thrombocythemia or primary myelofibrosis do not, suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg, interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly, we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424, the first potent, selective, oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC(50)] = 281nM), and proliferation of JAK2V617F(+) Ba/F3 cells (IC(50) = 127nM). In primary cultures, INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F(+) polycythemia vera patients (IC(50) = 67nM) versus healthy donors (IC(50) > 400nM). In a mouse model of JAK2V617F(+) MPN, oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines, and preferentially eliminated neoplastic cells, resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs.


Blood | 2010

Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity

Xiangdong Liu; Niu Shin; Holly K. Koblish; Qian Wang; Kathy S. Wang; Lynn Leffet; Michael J. Hansbury; Beth Thomas; Mark Rupar; Paul Waeltz; Kevin Bowman; Padmaja Polam; Richard B. Sparks; Eddy W. Yue; Yanlong Li; Richard Wynn; Jordan S. Fridman; Timothy C. Burn; Andrew P. Combs; Robert Newton; Peggy Scherle

Indoleamine 2,3-dioxygenase-1 (IDO1; IDO) mediates oxidative cleavage of tryptophan, an amino acid essential for cell proliferation and survival. IDO1 inhibition is proposed to have therapeutic potential in immunodeficiency-associated abnormalities, including cancer. Here, we describe INCB024360, a novel IDO1 inhibitor, and investigate its roles in regulating various immune cells and therapeutic potential as an anticancer agent. In cellular assays, INCB024360 selectively inhibits human IDO1 with IC(50) values of approximately 10nM, demonstrating little activity against other related enzymes such as IDO2 or tryptophan 2,3-dioxygenase (TDO). In coculture systems of human allogeneic lymphocytes with dendritic cells (DCs) or tumor cells, INCB024360 inhibition of IDO1 promotes T and natural killer (NK)-cell growth, increases IFN-gamma production, and reduces conversion to regulatory T (T(reg))-like cells. IDO1 induction triggers DC apoptosis, whereas INCB024360 reverses this and increases the number of CD86(high) DCs, potentially representing a novel mechanism by which IDO1 inhibition activates T cells. Furthermore, IDO1 regulation differs in DCs versus tumor cells. Consistent with its effects in vitro, administration of INCB024360 to tumor-bearing mice significantly inhibits tumor growth in a lymphocyte-dependent manner. Analysis of plasma kynurenine/tryptophan levels in patients with cancer affirms that the IDO pathway is activated in multiple tumor types. Collectively, the data suggest that selective inhibition of IDO1 may represent an attractive cancer therapeutic strategy via up-regulation of cellular immunity.


Journal of Immunology | 2010

Selective Inhibition of JAK1 and JAK2 Is Efficacious in Rodent Models of Arthritis: Preclinical Characterization of INCB028050

Jordan S. Fridman; Peggy Scherle; Robert Collins; Timothy Burn; Yanlong Li; Jun Li; Maryanne Covington; Beth Thomas; Paul Collier; Margaret Favata; Xiaoming Wen; Jack G. Shi; Ryan F. McGee; Patrick J. Haley; Stacey Shepard; James D. Rodgers; Swamy Yeleswaram; Greg Hollis; Robert Newton; Brian Metcalf; Steven M. Friedman; Kris Vaddi

Inhibiting signal transduction induced by inflammatory cytokines offers a new approach for the treatment of autoimmune diseases such as rheumatoid arthritis. Kinase inhibitors have shown promising oral disease-modifying antirheumatic drug potential with efficacy similar to anti-TNF biologics. Direct and indirect inhibition of the JAKs, with small molecule inhibitors like CP-690,550 and INCB018424 or neutralizing Abs, such as the anti-IL6 receptor Ab tocilizumab, have demonstrated rapid and sustained improvement in clinical measures of disease, consistent with their respective preclinical experiments. Therefore, it is of interest to identify optimized JAK inhibitors with unique profiles to maximize therapeutic opportunities. INCB028050 is a selective orally bioavailable JAK1/JAK2 inhibitor with nanomolar potency against JAK1 (5.9 nM) and JAK2 (5.7 nM). INCB028050 inhibits intracellular signaling of multiple proinflammatory cytokines including IL-6 and IL-23 at concentrations <50 nM. Significant efficacy, as assessed by improvements in clinical, histologic and radiographic signs of disease, was achieved in the rat adjuvant arthritis model with doses of INCB028050 providing partial and/or periodic inhibition of JAK1/JAK2 and no inhibition of JAK3. Diminution of inflammatory Th1 and Th17 associated cytokine mRNA levels was observed in the draining lymph nodes of treated rats. INCB028050 was also effective in multiple murine models of arthritis, with no evidence of suppression of humoral immunity or adverse hematologic effects. These data suggest that fractional inhibition of JAK1 and JAK2 is sufficient for significant activity in autoimmune disease models. Clinical evaluation of INCB028050 in RA is ongoing.


Cancer Biology & Therapy | 2006

Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells

Phillip Liu; Xiangdong Liu; Yanlong Li; Maryanne B. Covington; Richard Wynn; Reid Huber; Milton Hillman; Dawn Ellis; Cindy Marando; Kamna Katiyar; Jodi D. Bradley; Kenneth Abremski; Mark Stow; Mark Rupar; Jincong Zhuo; Yun-Long Li; Qiyan Lin; David M. Burns; Meizhong Xu; Colin Zhang; Ding-Quan Qian; Chunhong He; Vaqar Sharief; Lingkai Weng; Costas Agrios; Eric Shi; Brian Walter Metcalf; Robert Newton; Steven M. Friedman; Wenqing Yao

ALL AUTHORS: Phillip C.C. Liu, Xiangdong Liu, Yanlong Li, Maryanne Covington, Richard Wynn, Reid Huber, Milton Hillman, Gengjie Yang, Dawn Ellis, Cindy Marando, Kamna Katiyar, Jodi Bradley, Kenneth Abremski, Mark Stow, Mark Rupar, Jincong Zhuo, Yun-Long Li, Qiyan Lin, David Burns, Meizhong Xu, Colin Zhang, Ding-Quan Qian, Chunhong He, Vaqar Sharief, Lingkai Weng, Costas Agrios, Eric Shi, Brian Metcalf, Robert Newton, Steven Friedman, Wenqing Yaol, Peggy Scherlel, Gregory Hollis, Timothy C. Burn Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis. Thus, inhibition of the HER2 sheddase may provide a novel therapeutic approach for breast cancer. We describe the use of transcriptional profiling, pharmacological and in vitro approaches to identify the major source of HER2 sheddase activity. Real-time PCR was used to identify those ADAM family members which were expressed in HER2 shedding cell lines. siRNAs that selectively inhibited ADAM10 expression reduced HER2 shedding. In addition, we profiled over 1000 small molecules for in vitro inhibition of a panel of ADAM and MMP proteins; a positive correlation was observed only between ADAM10 inhibition and reduction of HER2 ECD shedding in a cell based assay. Finally, in vitro studies demonstrate that in combination with low doses of Herceptin, selective ADAM10 inhibitors decrease proliferation in HER2 overexpressing cell lines while inhibitors, that do not inhibit ADAM10, have no impact. These results are consistent with ADAM10 being a major determinant of HER2 shedding, the inhibition of which, may provide a novel therapeutic approach for treating a variety of cancers with active HER2 signaling.


Journal of Medicinal Chemistry | 2009

Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model.

Eddy W. Yue; Brent Douty; Brian Wayland; Michael J. Bower; Xiangdong Liu; Lynn Leffet; Qian Wang; Kevin Bowman; Michael J. Hansbury; Changnian Liu; Min Wei; Yanlong Li; Richard Wynn; Timothy C. Burn; Holly Koblish; Jordan S. Fridman; Brian Walter Metcalf; Peggy Scherle; Andrew P. Combs

A hydroxyamidine chemotype has been discovered as a key pharmacophore in novel inhibitors of indoleamine 2,3-dioxygenase (IDO). Optimization led to the identification of 5l, which is a potent (HeLa IC(50) = 19 nM) competitive inhibitor of IDO. Testing of 5l in mice demonstrated pharmacodynamic inhibition of IDO, as measured by decreased kynurenine levels (>50%) in plasma and dose dependent efficacy in mice bearing GM-CSF-secreting B16 melanoma tumors.


Cancer Biology & Therapy | 2006

Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab

Xiangdong Liu; Jordan S. Fridman; Qian Wang; Eian Caulder; Maryanne B. Covington; Changnian Liu; Cindy Marando; Jincong Zhuo; Yanlong Li; Wenqing Yao; Kris Vaddi; Robert Newton; Peggy Scherle; Steven M. Friedman

The HER-2 receptor tyrosine kinase is an important regulator of cell proliferation and survival, and it is a clinically validated target of therapeutic intervention for HER-2 positive breast cancer patients. Its extracellular domain (ECD) is frequently cleaved by protease(s) in HER-2 overexpressing breast cancer patients, rendering the remaining membrane-bound portion (p95) a constitutively activated kinase. The presence of both serum ECD and cellular p95 protein has been linked to poor clinical outcome as well as reduced effectiveness of some therapeutic treatments. We have identified a series of potent, selective small molecule inhibitors of ADAM proteases, exemplified here by INCB003619, and demonstrate that these inhibitors effectively block HER-2 cleavage in HER-2 overexpressing human breast cancer cell lines. Intriguingly, when used in combination, INCB003619 dramatically enhances the antiproliferative activity of suboptimal doses of the anti-HER-2 antibody, trastuzumab, in HER-2 overexpressing/shedding breast cancer cell lines, accompanied by reduced ERK and AKT phosphorylation. Furthermore, INCB003619, in combination with trastuzumab, augments the pro-apoptotic and antiproliferative effects of the chemotherapeutic agent paclitaxel. Consistent with these in vitro data, INCB003619 reduces serum ECD levels and enhances the antitumor effect of trastuzumab in a xenograft tumor model derived from the HER-2 overexpressing BT-474 breast cancer cell line. Collectively, these findings suggest that blocking HER-2 cleavage with selective ADAM inhibitors may represent a novel therapeutic approach for treating HER-2 overexpressing breast cancer patients.


Clinical Cancer Research | 2009

Combined Inhibition of Janus Kinase 1/2 for the Treatment of JAK2V617F-Driven Neoplasms: Selective Effects on Mutant Cells and Improvements in Measures of Disease Severity

Phillip Liu; Eian Caulder; Jun Li; Paul Waeltz; Alex Margulis; Richard Wynn; Mary Becker-Pasha; Yanlong Li; Erin Crowgey; Gregory F. Hollis; Patrick J. Haley; Richard B. Sparks; Andrew P. Combs; James D. Rodgers; Timothy C. Burn; Kris Vaddi; Jordan S. Fridman

Purpose: Deregulation of the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway is a hallmark for the Philadelphia chromosomenegative myeloproliferative diseases polycythemia vera, essential thrombocythemia, and primary myelofibrosis. We tested the efficacy of a selective JAK1/2 inhibitor in cellular and in vivo models of JAK2-driven malignancy. Experimental Design: A novel inhibitor of JAK1/2 was characterized using kinase assays. Cellular effects of this compound were measured in cell lines bearing the JAK2V617F or JAK1V658F mutation, and its antiproliferative activity against primary polycythemiavera patient cells was determined using clonogenic assays. Antineoplastic activity in vivo was determined using a JAK2V617F-driven xenograft model, and effects of the compound on survival, organomegaly, body weight, and disease-associated inflammatory markers were measured. Results: INCB16562 potently inhibited proliferation of cell lines and primary cells from PV patients carrying the JAK2V617F or JAK1V658F mutation by blocking JAK-STAT signaling and inducing apoptosis. In vivo, INCB16562 reduced malignant cell burden, reversed splenomegaly and normalized splenic architecture, improved body weight gains, and extended survival in a model of JAK2V617F-driven hematologic malignancy. Moreover, these mice suffered from markedly elevated levels of inflammatory cytokines, similar to advanced myeloproliferative disease patients, which was reversed upon treatment. Conclusions: These data showed that administration of the dual JAK1/2 inhibitor INCB16562 reduces malignant cell burden, normalizes spleen size and architecture, suppresses inflammatory cytokines, improves weight gain, and extends survival in a rodent model of JAK2V617F-driven hematologic malignancy. Thus, selective inhibitors of JAK1 and JAK2 represent a novel therapy for the patients with myeloproliferative diseases and other neoplasms associated with JAK dysregulation. (Clin Cancer Res 2009;15(22):6891900)


ACS Medicinal Chemistry Letters | 2017

INCB24360 (Epacadostat), a Highly Potent and Selective Indoleamine-2,3-dioxygenase 1 (IDO1) Inhibitor for Immuno-oncology

Eddy W. Yue; Richard B. Sparks; Padmaja Polam; Dilip P. Modi; Brent Douty; Brian Wayland; Brian Glass; Amy Takvorian; Joseph Glenn; Wenyu Zhu; Michael J. Bower; Xiangdong Liu; Lynn Leffet; Qian Wang; Kevin Bowman; Michael J. Hansbury; Min Wei; Yanlong Li; Richard Wynn; Timothy C. Burn; Holly K. Koblish; Jordan S. Fridman; Tom Emm; Peggy Scherle; Brian Walter Metcalf; Andrew P. Combs

A data-centric medicinal chemistry approach led to the invention of a potent and selective IDO1 inhibitor 4f, INCB24360 (epacadostat). The molecular structure of INCB24360 contains several previously unknown or underutilized functional groups in drug substances, including a hydroxyamidine, furazan, bromide, and sulfamide. These moieties taken together in a single structure afford a compound that falls outside of “drug-like” space. Nevertheless, the in vitro ADME data is consistent with the good cell permeability and oral bioavailability observed in all species (rat, dog, monkey) tested. The extensive intramolecular hydrogen bonding observed in the small molecule crystal structure of 4f is believed to significantly contribute to the observed permeability and PK. Epacadostat in combination with anti-PD1 mAb pembrolizumab is currently being studied in a phase 3 clinical trial in patients with unresectable or metastatic melanoma.


European Journal of Pharmacology | 2012

INCB38579, a novel and potent histamine H4 receptor small molecule antagonist with anti-inflammatory pain and anti-pruritic functions

Niu Shin; Maryanne Covington; Di Bian; Jincong Zhuo; Kevin Bowman; Yanlong Li; Maxim Soloviev; Ding-Quan Qian; Patricia Feldman; Lynn Leffet; Xin He; Kathy Wang; Kristin Krug; Dan Bell; Philip Czerniak; Zhijing Hu; Hui Zhao; Jing Zhang; Swamy Yeleswaram; Wenqing Yao; Robert Newton; Peggy Scherle

The histamine H₄ receptor mediates several histamine-induced cellular functions of leukocytes, including cell migration and cytokine production. Recent studies suggest that histamine signaling through the histamine H₄ receptor can also have anti-pruritic and anti-nociceptive functions. 1-(7-(2-amino-6-(4-methylpiperazin-1-yl) pyrimidin-4-yl)-3, 4-dihdroisoquinolin-2(1H)-yl)-2-cyclopentylethanone (INCB38579) is a novel small molecule antagonist of the human and rodent histamine H₄ receptors with at least 80-fold selectivity over the human histamine H₁, H₂ and H₃ receptors, and has good pharmacokinetic properties in rats and mice. The compound is potent in inhibiting histamine binding to and signaling through the recombinant human, mouse and rat histamine H₄ receptors and blocks the histamine-induced migration of human and mouse dendritic cells, as well as the cell shape change and migration of human eosinophils. INCB38579 and histamine may have separate but overlapping binding sites on the human histamine H₄ receptor. This novel inhibitor is efficacious when evaluated in two previously established in vivo models for histamine H₄ receptor activity (histamine-induced itch in mice and carrageenan-induced acute inflammatory pain in rats). When examined in formalin-induced pain models, INCB38579 significantly reduces the sustained inflammatory pain experienced by rats and mice. A good correlation between the protein binding adjusted potency from in vitro studies and its analgesic effect in vivo was observed. These results suggest that INCB38579 can serve as a useful tool for pharmacologic characterization of the histamine H₄ receptor and further support the hypothesis that targeting the histamine H₄ receptor may provide new therapeutic agents for various chronic inflammatory diseases, including inflammatory pain.


Journal of Pharmacology and Experimental Therapeutics | 2011

Identification and Characterization of INCB9471, an Allosteric Noncompetitive Small-Molecule Antagonist of C-C Chemokine Receptor 5 with Potent Inhibitory Activity against Monocyte Migration and HIV-1 Infection

Niu Shin; Kim Solomon; Naiming Zhou; Kathy Wang; Vasudha Garlapati; Beth Thomas; Yanlong Li; Maryanne B. Covington; Frédéric Baribaud; Susan Erickson-Viitanen; Philip Czerniak; Nancy Contel; Philip L. Liu; Timothy C. Burn; Gregory F. Hollis; Swamy Yeleswaram; Kris Vaddi; Chu-Biao Xue; Brian Metcalf; Steve Friedman; Peggy Scherle; Robert Newton

C-C chemokine receptor 5 (CCR5) is a clinically proven target for inhibition of HIV-1 infection and a potential target for various inflammatory diseases. In this article, we describe 5-[(4-{(3S)-4-[(1R,2R)-2-ethoxy-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]-3-methylpiperazin-1-yl}-4-methylpiperidin-1-yl)carbonyl]-4,6-dimethylpyrimidine dihydrochloride (INCB9471), a potent and specific inhibitor of human CCR5 that has been proven to be safe and efficacious in viral load reduction in phase I and II human clinical trails. INCB9471 was identified using a primary human monocyte-based radioligand competition binding assay. It potently inhibited macrophage inflammatory protein-1β-induced monocyte migration and infection of peripheral blood mononuclear cells by a panel of R5-HIV-1 strains. The results from binding and signaling studies using incremental amounts of INCB9471 demonstrated INCB9471 as a noncompetitive CCR5 inhibitor. The CCR5 residues that are essential for interaction with INCB9471 were identified by site-specific mutagenesis studies. INCB9471 rapidly associates with but slowly dissociates from CCR5. When INCB9471 was compared with three CCR5 antagonists that had been tested in clinical trials, the potency of INCB9471 in blocking CCR5 ligand binding was similar to those of 4,6-dimethyl-5-{[4-methyl-4-((3S)-3-methyl-4-{(1R0–2-(methyloxy)-1-[4-(trifluoromethyl) phenyl]ethyl}-1-piperazingyl)-1-piperidinyl]carbonyl}pyrimidine (SCH-D; vicriviroc), 4-{[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxyl)methyl]-2, 5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenyl]oxy}benzoic acid hydrochloride (873140; aplaviroc), and 4,4-difluoro-N-((1S)-3-{(3-endo)-3-[3-methyl-5-(1-methylethyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl}-1-phenylpropyl)cyclohexanecarboxamide (UK427857; maraviroc). Its inhibitory activity against CCR5-mediated Ca2+ mobilization was also similar to those of SCH-D and 873140. Further analysis suggested that INCB9471 and UK427857 may have different binding sites on CCR5. The significance of two CCR5 antagonists with different binding sites is discussed in the context of potentially overcoming drug-resistant HIV-1 strains.

Collaboration


Dive into the Yanlong Li's collaboration.

Researchain Logo
Decentralizing Knowledge