Yanming Du
Drexel University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanming Du.
Antiviral Research | 2013
Jinhong Chang; Travis K. Warren; Xuesen Zhao; Tina Gill; Fang Guo; Lijuan Wang; Mary Ann Comunale; Yanming Du; Dominic S. Alonzi; Wenquan Yu; Hong Ye; Fei Liu; Ju-Tao Guo; Anand Mehta; Andrea Cuconati; Terry D. Butters; Sina Bavari; Xiaodong Xu; Timothy M. Block
Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses.
Journal of Medicinal Chemistry | 2012
Wenquan Yu; Tina Gill; Lijuan Wang; Yanming Du; Hong Ye; Xiaowang Qu; Ju-Tao Guo; Andrea Cuconati; Kang Zhao; Timothy M. Block; Xiaodong Xu; Jinhong Chang
We recently described the discovery of oxygenated N-alkyl deoxynojirimycin (DNJ) derivative 7 (CM-10-18) with antiviral activity against dengue virus (DENV) infection both in vitro and in vivo. This imino sugar was promising but had an EC(50) against DENV in BHK cells of 6.5 μM, which limited its use in in vivo. Compound 7 presented structural opportunities for activity relationship analysis, which we exploited and report here. These structure-activity relationship studies led to analogues 2h, 2l, 3j, 3l, 3v, and 4b-4c with nanomolar antiviral activity (EC(50) = 0.3-0.5 μM) against DENV infection, while maintaining low cytotoxicity (CC(50) > 500 μM, SI > 1000). In male Sprague-Dawley rats, compound 3l was well tolerated at a dose up to 200 mg/kg and displayed desirable PK profiles, with significantly improved bioavailability (F = 92 ± 4%).
PLOS Pathogens | 2017
Fang Guo; Qiong Zhao; Muhammad Sheraz; Junjun Cheng; Yonghe Qi; Qing Su; Andrea Cuconati; Lai Wei; Yanming Du; Wenhui Li; Jinhong Chang; Ju-Tao Guo
Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.
Journal of Virology | 2016
Fang Guo; Shuo Wu; Justin G. Julander; Julia Ma; Xuexiang Zhang; John L. Kulp; Andrea Cuconati; Timothy M. Block; Yanming Du; Ju-Tao Guo; Jinhong Chang
ABSTRACT Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 μM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination rate fails to prevent outbreaks in at-risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 deaths. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of a YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever.
Emerging microbes & infections | 2013
Jinhong Chang; Ju-Tao Guo; Yanming Du; Timothy M. Block
Ebola virus and Marburg virus are members of the family of Filoviridae and are etiological agents of a deadly hemorrhagic fever disease. The clinical symptoms of Ebola and Marburg hemorrhagic fevers are difficult to distinguish and there are currently no specific antiviral therapies against either of the viruses. Therefore, a drug that is safe and effective against both would be an enormous breakthrough. We and others have shown that the folding of the glycoproteins of many enveloped viruses, including the filoviruses, is far more dependent upon the calnexin pathway of protein folding than are most host glycoproteins. Drugs that inhibit this pathway would be expected to be selectively antiviral. Indeed, as we summarize in this review, imino sugars that are competitive inhibitors of the host endoplasmic reticular α-glucosidases I and II, which are enzymes that process N-glycan on nascent glycoproteins and thereby inhibit calnexin binding to the nascent glycoproteins, have been shown to have antiviral activity against a number of enveloped viruses including filoviruses. In this review, we describe the state of development of imino sugars for use against the filoviruses, and provide an explanation for the basis of their antiviral activity as well as limitations.
Journal of Virology | 2017
Shuo Wu; Qiong Zhao; Pinghu Zhang; John L. Kulp; Lydia Hu; Nicky Hwang; Jiming Zhang; Timothy M. Block; Xiaodong Xu; Yanming Du; Jinhong Chang; Ju-Tao Guo
ABSTRACT Chronic hepatitis B virus (HBV) infection is a global public health problem. Although the currently approved medications can reliably reduce the viral load and prevent the progression of liver diseases, they fail to cure the viral infection. In an effort toward discovery of novel antiviral agents against HBV, a group of benzamide (BA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA were discovered. The initial lead optimization efforts identified two BA derivatives with improved antiviral activity for further mechanistic studies. Interestingly, similar to our previously reported sulfamoylbenzamides (SBAs), the BAs promote the formation of empty capsids through specific interaction with HBV core protein but not other viral and host cellular components. Genetic evidence suggested that both SBAs and BAs inhibited HBV nucleocapsid assembly by binding to the heteroaryldihydropyrimidine (HAP) pocket between core protein dimer-dimer interfaces. However, unlike SBAs, BA compounds uniquely induced the formation of empty capsids that migrated more slowly in native agarose gel electrophoresis from A36V mutant than from the wild-type core protein. Moreover, we showed that the assembly of chimeric capsids from wild-type and drug-resistant core proteins was susceptible to multiple capsid assembly modulators. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy. Our studies thus indicate that BAs are a chemically and mechanistically unique type of HBV capsid assembly modulators and warranted for further development as antiviral agents against HBV. IMPORTANCE HBV core protein plays essential roles in many steps of the viral replication cycle. In addition to packaging viral pregenomic RNA (pgRNA) and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, the core protein dimers, existing in several different quaternary structures in infected hepatocytes, participate in and regulate HBV virion assembly, capsid uncoating, and covalently closed circular DNA (cccDNA) formation. It is anticipated that small molecular core protein assembly modulators may disrupt one or multiple steps of HBV replication, depending on their interaction with the distinct quaternary structures of core protein. The discovery of novel core protein-targeting antivirals, such as benzamide derivatives reported here, and investigation of their antiviral mechanism may lead to the identification of antiviral therapeutics for the cure of chronic hepatitis B.
Bioorganic & Medicinal Chemistry Letters | 2013
Yanming Du; Hong Ye; Tina Gill; Lijuan Wang; Fang Guo; Andrea Cuconati; Ju-Tao Guo; Timothy M. Block; Jinhong Chang; Xiaodong Xu
Novel N-alkyldeoxynojirimycins (NADNJs) with two hydrophobic groups attached to a nitrogen linker on the alkyl chain were designed. A novel NADNJ containing a terminal tertiary carboxamide moiety was discovered that was a potent inhibitor against BVDV. Further optimization resulted in a structurally more stable lead compound 24 with a submicromolar EC50 against BVDV, Dengue, and Tacaribe; and low cytotoxicity.
Antiviral Research | 2014
Fang Guo; Xuesen Zhao; Tina Gill; Yan Zhou; Matthew R. Campagna; Lijuan Wang; Fei Liu; Pinghu Zhang; Laura DiPaolo; Yanming Du; Xiaodong Xu; Dong Jiang; Lai Wei; Andrea Cuconati; Timothy M. Block; Ju-Tao Guo; Jinhong Chang
Abstract Virus infection of host cells is sensed by innate pattern recognition receptors (PRRs) and induces production of type I interferons (IFNs) and other inflammatory cytokines. These cytokines orchestrate the elimination of the viruses but are occasionally detrimental to the hosts. The outcomes and pathogenesis of viral infection are largely determined by the specific interaction between the viruses and their host cells. Therefore, compounds that either inhibit viral infection or modulate virus-induced cytokine response should be considered as candidates for managing virus infection. The aim of the study was to identify compounds in both categories, using a single cell-based assay. Our screening platform is a HEK293 cell-based reporter assay where the expression of a firefly luciferase is under the control of a human IFN-β promoter. We have demonstrated that infection of the reporter cell line with a panel of RNA viruses activated the reporter gene expression that correlates quantitatively with the levels of virus replication and progeny virus production, and could be inhibited in a dose-dependent manner by known antiviral compound or inhibitors of PRR signal transduction pathways. Using Dengue virus as an example, a pilot screening of a small molecule library consisting of 26,900 compounds proved the concept that the IFN-β promoter reporter assay can serve as a convenient high throughput screening platform for simultaneous discovery of antiviral and innate immune response modulating compounds. A representative antiviral compound from the pilot screening, 1-(6-ethoxybenzo[d]thiazol-2-yl)-3-(3-methoxyphenyl) urea, was demonstrated to specifically inhibit several viruses belonging to the family of flaviviridae.
Bioorganic & Medicinal Chemistry Letters | 2013
Yanming Du; Hong Ye; Fang Guo; Lijuan Wang; Tina Gill; Noshena Khan; Andrea Cuconati; Ju-Tao Guo; Timothy M. Block; Jinhong Chang; Xiaodong Xu
Novel N-alkyldeoxynojirimycins (NADNJs) based on our previous lead 3 were designed, synthesized and tested in metabolic assays and in virus cultures. NADNJs containing terminal tertiary benzamide, sulfonamide, urea, and oxazolidinone moieties were discovered to have improved metabolic stability compared to 3, while maintaining submicromolar EC50 against BVDV and Tacaribe virus; and low cytotoxicity.
ACS Medicinal Chemistry Letters | 2017
Julia Ma; Shuo Wu; Xuexiang Zhang; Fang Guo; Katherine Yang; Jia Guo; Qing Su; Huagang Lu; Patrick Lam; Yuhuan Li; Zhengyin Yan; William A. Kinney; Ju-Tao Guo; Timothy M. Block; Jinhong Chang; Yanming Du
IHVR-19029 (6) is a lead endoplasmic reticulum α-glucosidases I and II inhibitor, which efficiently protected mice from lethal Ebola and Marburg virus infections via injection route, but suffered from low bioavailability and off-target interactions with gut glucosidases when administered orally. In an effort to improve efficacious exposure levels and avoid side effects, we designed and synthesized ester prodrugs. Not only were the prodrugs stable in simulated gastric and intestinal fluids and were inactive against glucosidases but they also exhibited antiviral activities against dengue virus infection in a cell based assay. Further in vitro evaluation showed that the bioconversion of the prodrugs is species dependent: in mice, the prodrugs were converted to 6 in the plasma and liver; while in human, the conversion occurred mainly in liver. An in vivo pharmacokinetic study in mice demonstrated that the tetrabutyrate prodrug 8 achieved the most improved overall exposure of 6 upon both oral and intravenous administration.