Yanming Zhu
China University of Mining and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanming Zhu.
Energy Exploration & Exploitation | 2017
Xiaowei Hou; Yanming Zhu; Shangbin Chen; Yang Wang
The gas flow mechanisms in source rocks of coal measures under the effects of the pore structures and permeability characteristics were investigated by field-emission scanning electron microscopy, low-pressure nitrogen gas adsorption, high-pressure mercury intrusion, and pressure pulse decay permeability method. Various flow regimes were distinguished in the pores and fractures of differing scales, and the mass fluxes through the same were calculated using the data obtained by the numerical and experimental investigations. Results indicated that mesopores predominated in shale, while coal contained well-developed mesopores and macropores. In addition, the permeabilities of coal and shale were observed to be significantly anisotropic and highly stress dependent. The cross-sectional area proportions of the pores per unit cross-sectional area of the matrix in the free molecular, transition, and slip flow regimes in shale and coal were determined to be, respectively, 0.2:0.7:0.1 and 0.15:0.6:0.25. In the free molecular and transition flow regimes, the mass flux decreased with increasing reservoir depth, while the reverse was the case in the slip flow regime. Further, in the continuum flow regime, the mass flux was unimodally distributed with respect to the reservoir depth. The total mass flux in coal was greater in the direction perpendicular to the bedding compared to the direction parallel to the bedding, while the reverse was the case in shale. In addition, the continuum flow regime predominated in coal in both the directions perpendicular and parallel to the bedding, but only in the direction parallel to the bedding in shale. This work presents a comprehensive model for the analysis of all the flow regimes in pores and fractures of differing scales, as well as the anisotropy. Findings of the study are meaningful for establishing the coupling accumulation mechanism of the Three Coal Gases and developing a unified exploration and exploitation program.
Fractals | 2018
Yang Wang; Caifang Wu; Yanming Zhu; Shangbin Chen; Shimin Liu; Rui Zhang
Lacustrine shale gas has received considerable attention and has been playing an important role in unconventional natural gas production in China. In this study, multiple techniques, including total organic carbon (TOC) analysis, X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), helium pycnometry and low-pressure N2 adsorption have been applied to characterize the pore structure of lacustrine shale of Upper Triassic Yanchang Formation from the Ordos Basin. The results show that organic matter (OM) pores are the most important type dominating the pore system, while interparticle (interP) pores, intraparticle (intraP) and microfractures are also usually observed between or within different minerals. The shapes of OM pores are less complex compared with the other two pore types based on the Image-Pro Plus software analysis. In addition, the specific surface area ranges from 2.76m2/g to 10.26m2/g and the pore volume varies between 0.52m3/100g and 1.31m3/100g. Two fractal ...
Energy Exploration & Exploitation | 2018
Xiao-Rong Qu; Yanming Zhu; Wu Li; Xin Tang; Han Zhang
The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY%Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.
Energy Exploration & Exploitation | 2018
Xiaowei Hou; Yanming Zhu; Zhenfei Jiang; Haitao Gao
Geological prediction models for gas content in marine–terrigenous shale under the effects of reservoir characteristics and in situ geological conditions, were established using methane isothermal adsorption, high temperature/pressure methane isothermal adsorption, total organic carbon, X-ray diffraction, mercury porosimetry, porosity in net confining stress, and field desorption methods. Results indicated that the adsorption capacity of marine–terrigenous shale has a linearly positive correlation with total organic carbon content and maturity. Clay and quartz minerals are the two main components of inorganic minerals in marine–terrigenous shale, with an average content of 54.3% and 36.9%, respectively. Adsorption capacity of marine–terrigenous shale is slightly positive correlated with clay content, while it exponentially decreases with increasing quartz content. The effects of in situ temperature and reservoir pressure on adsorption capacity in marine–terrigenous shale are also significant. The adsorption capacity of marine–terrigenous shale shows a clear decreasing trend as temperature increases, while it increases with increasing reservoir pressure. The porosity of marine–terrigenous shale is characterized by highly stress-sensitive, decreasing exponentially with increasing effective stress, which results in a more complex occurrence of free gas in deep shale reservoirs. In addition, gas saturation for the shale samples was calculated based on the results of field desorption, after which geological prediction models of total gas, adsorbed gas, and free gas were established while considering the coupled effects. Adsorbed gas, free gas, and total gas content all initially increase as burial depth increases, and then eventually decrease. Adsorbed gas content and free gas content have a positive correlation with total organic carbon content and porosity, indicating that the total gas content at different burial depths is mainly controlled by the total organic carbon content and porosity.
International Journal of Coal Geology | 2004
Junying Zhang; Deyi Ren; Yanming Zhu; Chen-Lin Chou; Rongshu Zeng; Baoshan Zheng
Energy & Fuels | 2014
Yang Wang; Yanming Zhu; Shangbin Chen; Wu Li
Fuel | 2016
Yang Wang; Yanming Zhu; Shimin Liu; Rui Zhang
Marine and Petroleum Geology | 2014
Shangbin Chen; Yanming Zhu; Yong Qin; Hongyan Wang; Honglin Liu; Junhua Fang
International Journal of Coal Geology | 2008
Wenfeng Wang; Yong Qin; Shuxun Sang; Yanming Zhu; Chaoyong Wang; Dominik J. Weiss
International Journal of Coal Geology | 2006
Wenfeng Wang; Yong Qin; Chongtao Wei; Zhuangfu Li; Yinghai Guo; Yanming Zhu