Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yann Cojan is active.

Publication


Featured researches published by Yann Cojan.


NeuroImage | 2009

Motor inhibition in hysterical conversion paralysis

Yann Cojan; Lakshmi Waber; Alain Carruzzo; Patrik Vuilleumier

Brain mechanisms underlying hysterical conversion symptoms are still poorly known. Recent hypotheses suggested that activation of motor pathways might be suppressed by inhibitory signals based on particular emotional situations. To assess motor and inhibitory brain circuits during conversion paralysis, we designed a go-nogo task while a patient underwent functional magnetic resonance imaging (fMRI). Preparatory activation arose in right motor cortex despite left paralysis, indicating preserved motor intentions, but with concomitant increases in vmPFC regions that normally mediate motivational and affective processing. Failure to execute movement on go trials with the affected left hand was associated with activations in precuneus and ventrolateral frontal gyrus. However, right frontal areas normally subserving inhibition were activated by nogo trials for the right (normal) hand, but not during go trials for the left hand (affected by conversion paralysis). By contrast, a group of healthy controls who were asked to feign paralysis showed similar activation on nogo trials and left-go trials with simulated weakness, suggesting that distinct inhibitory mechanisms are implicated in simulation and conversion paralysis. In the patient, right motor cortex also showed enhanced functional connectivity with the posterior cingulate cortex, precuneus, and vmPFC. These results suggest that conversion symptoms do not act through cognitive inhibitory circuits, but involve selective activations in midline brain regions associated with self-related representations and emotion regulation.


Neuron | 2009

The Brain under Self-Control: Modulation of Inhibitory and Monitoring Cortical Networks during Hypnotic Paralysis

Yann Cojan; Lakshmi Waber; Sophie Schwartz; Laurent Rossier; Alain Forster; Patrik Vuilleumier

Brain mechanisms of hypnosis are poorly known. Cognitive accounts proposed that executive attentional systems may cause selective inhibition or disconnection of some mental operations. To assess motor and inhibitory brain circuits during hypnotic paralysis, we designed a go-no-go task while volunteers underwent functional magnetic resonance imaging (fMRI) in three conditions: normal state, hypnotic left-hand paralysis, and feigned paralysis. Preparatory activation arose in right motor cortex despite left hypnotic paralysis, indicating preserved motor intentions, but with concomitant increases in precuneus regions that normally mediate imagery and self-awareness. Precuneus also showed enhanced functional connectivity with right motor cortex. Right frontal areas subserving inhibition were activated by no-go trials in normal state and by feigned paralysis, but irrespective of motor blockade or execution during hypnosis. These results suggest that hypnosis may enhance self-monitoring processes to allow internal representations generated by the suggestion to guide behavior but does not act through direct motor inhibition.


Cortex | 2013

Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients.

Arnaud Saj; Yann Cojan; Roland Vocat; Jacques Luauté; Patrik Vuilleumier

Unilateral spatial neglect involves a failure to report or orient to stimuli in the contralesional (left) space due to right brain damage, with severe handicap in everyday activities and poor rehabilitation outcome. Because behavioral studies suggest that prism adaptation may reduce spatial neglect, we investigated the neural mechanisms underlying prism effects on visuo-spatial processing in neglect patients. We used functional magnetic resonance imaging (fMRI) to examine the effect of (right-deviating) prisms on seven patients with left neglect, by comparing brain activity while they performed three different spatial tasks on the same visual stimuli (bisection, search, and memory), before and after a single prism-adaptation session. Following prism adaptation, fMRI data showed increased activation in bilateral parietal, frontal, and occipital cortex during bisection and visual search, but not during the memory task. These increases were associated with significant behavioral improvement in the same two tasks. Changes in neural activity and behavior were seen only after prism adaptation, but not attributable to mere task repetition. These results show for the first time the neural substrates underlying the therapeutic benefits of prism adaptation, and demonstrate that visuo-motor adaptation induced by prism exposure can restore activation in bilateral brain networks controlling spatial attention and awareness. This bilateral recruitment of fronto-parietal networks may counteract the pathological biases produced by unilateral right hemisphere damage, consistent with recent proposals that neglect may reflect lateralized deficits induced by bilateral hemispheric dysfunction.


The Journal of Sexual Medicine | 2011

Neural bases of hypoactive sexual desire disorder in women: an event-related fMRI study

Francesco Bianchi-Demicheli; Yann Cojan; Lakshmi Waber; Nathalie Catherine Marie Recordon; Patrik Vuilleumier; Stephanie Ortigue

INTRODUCTION Although there is an abundant debate regarding the mechanisms sustaining one of the most common sexual complaints among women, i.e., female hypoactive sexual desire disorder (HSDD), little remains known about the specific neural bases of this disorder. AIM The main goal of this study was to determine whether women with HSDD showed differential patterns of activation within the brain network that is active for sexual desire in subjects without HSDD. METHODS A total of 28 right-handed women participated in this study (mean age 31.1±7.02 years). Thirteen out of the 28 women had HSDD (HSDD participants), while 15 women reported no hypoactive sexual desire disorder (NHSDD participants). Using event-related functional magnetic resonance imaging (fMRI), we compared the regional cerebral blood flow responses between these two groups of participants, while they were looking at erotic vs. non-erotic stimuli. MAIN OUTCOME MEASURE Blood-oxygenation level dependent (BOLD) signal changes in response to erotic stimuli (compared with non-erotic stimuli). Statistical Parametric Mapping was used to identify brain regions that demonstrated significant differential activations between stimuli and between groups. RESULTS As expected, behavioral results showed that NHSDD participants rated erotic stimuli significantly higher than HSDD participants did on a 10-point desirable scale. No rating difference was observed for the non-erotic stimuli between NHSDD and HSDD participants. Our functional neuroimaging results extended these data by demonstrating two distinct types of neural changes in participants with and without HSDD. In comparison with HSDD participants, participants without HSDD demonstrated more activation in brain areas involved in the processing of erotic stimuli, including intraparietal sulcus, dorsal anterior cingulate gyrus, and ento/perirhinal region. Interestingly, HSDD participants also showed additional activations in brain areas associated with higher order social and cognitive functions, such as inferior parietal lobule, inferior frontal gyrus, and posterior medial occipital gyrus. CONCLUSION Together, these findings indicate that HSDD participants do not only show a hypo activation in brain areas mediating sexual desire, but also a different brain network of hyper activation, which might reflect differences in subjective, social, and cognitive interpretations of erotic stimuli. Collectively, these data are in line with the incentive motivation model of sexual functioning.


Social Cognitive and Affective Neuroscience | 2015

Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity

Wiebke Trost; Sascha Frühholz; Thomas Cochrane; Yann Cojan; Patrik Vuilleumier

To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic conditions.


NeuroImage | 2015

What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.

Yann Cojan; Camille Piguet; Patrik Vuilleumier

UNLABELLED Theoretical models of hypnosis have emphasized the importance of attentional processes in accounting for hypnotic phenomena but their exact nature and brain substrates remain unresolved. Individuals vary in their susceptibility to hypnosis, a variability often attributed to differences in attentional functioning such as greater ability to filter irrelevant information and inhibit prepotent responses. However, behavioral studies of attentional performance outside the hypnotic state have provided conflicting results. We used fMRI to investigate the recruitment of attentional networks during a modified flanker task in High and Low hypnotizable participants. The task was performed in a normal (no hypnotized) state. While behavioral performance did not reliably differ between groups, components of the fronto-parietal executive network implicated in monitoring (anterior cingulate cortex; ACC), adjustment (lateral prefrontal cortex; latPFC), and implementation of attentional control (intraparietal sulcus; IPS) were differently activated depending on the hypnotizability of the subjects: the right inferior frontal gyrus (rIFG) was more recruited, whereas IPS and ACC were less recruited by High susceptible individuals compared to Low. Our results demonstrate that susceptibility to hypnosis is associated with particular executive control capabilities allowing efficient attentional focusing, and point to specific neural substrates in right prefrontal cortex. SIGNIFICANCE STATEMENT We demonstrated that outside hypnosis, low hypnotizable subjects recruited more parietal cortex and anterior cingulate regions during selective attention conditions suggesting a better detection and implementation of conflict. However, outside hypnosis the right inferior frontal gyrus (rIFG) was more recruited by highly hypnotizable subjects during selective attention conditions suggesting a better control of conflict. Furthermore, in highly hypnotizable subjects this region was more connected to the default mode network suggesting a tight dialogue between internally and externally driven processes that may permit higher flexibility in attention and underlie a greater ability to dissociate.


Neurophysiologie Clinique-clinical Neurophysiology | 2014

Functional neuro-anatomy of egocentric versus allocentric space representation

Arnaud Saj; Yann Cojan; B. Musel; J. Honoré; L. Borel; Patrik Vuilleumier

INTRODUCTION The functional neuroanatomy of the egocentric and allocentric representations of space remains poorly studied with neuroimaging. Here we aim to determine brain structures subserving two different kinds of spatial representations centred on the main axis of either the body or the external scene. METHOD Sixteen healthy participants evaluated the alignment of a bar relative to the middle of their body (Ego) or relative to another stimulus (Allo) during functional MRI. In a control task (Ctrl), they had to judge the colour of the bar. RESULTS Correct response rates and response times were similar in the three tasks. fMRI data revealed a predominant role of the right hemisphere in the egocentric task (Ego vs. Allo): selective activity was found in the occipital, superior parietal, and inferior frontal cortices, as well as in the precuneus and supplementary motor area. On the left side, the insula, thalamus, and cerebellum were also activated. Conversely, the allocentric task (Allo vs. Ctrl) showed selective activity centred on the left temporal gyrus. DISCUSSION This study demonstrates a right hemisphere dominance for representations centred on the longitudinal body axis, but more left-sided activity for scene/object-centred representations of space. These new data shed light on the unique role of several regions involved in spatial perception and help better understand spatial deficits in patients with right hemispheric lesions.


NeuroImage | 2013

Neural substrates of cognitive switching and inhibition in a face processing task.

Camille Piguet; Virginie Sterpenich; Martin Desseilles; Yann Cojan; Gilles Bertschy; Patrik Vuilleumier

We frequently need to change our current occupation, an operation requiring additional effortful cognitive demands. Switching from one task to another may involve two distinct processes: inhibition of the previously relevant task-set, and initiation of a new one. Here we tested whether these two processes are underpinned by separate neural substrates, and whether they differ depending on the nature of the task and the emotional content of stimuli. We used functional magnetic resonance imaging in healthy human volunteers who categorize emotional faces according to three different judgment rules (color, gender, or emotional expression). Our paradigm allowed us to separate neural activity associated with inhibition and switching based on the sequence of the tasks required on successive trials. We found that the bilateral medial superior parietal lobule and left intraparietal sulcus showed consistent activation during switching regardless of the task. On the other hand, no common region was activated (or suppressed) as a consequence of inhibition across all tasks. Rather, task-specific effects were observed in brain regions that were more activated when switching to a particular task but less activated after inhibition of the same task. In addition, compared to other conditions, the emotional task elicited a similar switching cost but lower inhibition cost, accompanied by selective decrease in the anterior cingulate cortex when returning to this task shortly after inhibiting it. These results demonstrate that switching relies on domain-general processes mediated by postero-medial parietal areas, engaged across all tasks, but also provide novel evidence that task inhibition produces domain-specific decreases as a function of particular task demands, with only the latter inhibition component being modulated by emotional information.


Cortex | 2013

Time-course of motor inhibition during hypnotic paralysis: EEG topographical and source analysis

Yann Cojan; Aurélie Archimi; Nicole Cheseaux; Lakshmi Waber; Patrik Vuilleumier

Cognitive hypotheses of hypnotic phenomena have proposed that executive attentional systems may be either inhibited or overactivated to produce a selective alteration or disconnection of some mental operations. Recent brain imaging studies have reported changes in activity in both medial (anterior cingulate) and lateral (inferior) prefrontal areas during hypnotically induced paralysis, overlapping with areas associated with attentional control as well as inhibitory processes. To compare motor inhibition mechanisms responsible for paralysis during hypnosis and those recruited by voluntary inhibition, we used electroencephalography (EEG) to record brain activity during a modified bimanual Go-Nogo task, which was performed either in a normal baseline condition or during unilateral paralysis caused by hypnotic suggestion or by simulation (in two groups of participants, each tested once with both hands valid and once with unilateral paralysis). This paradigm allowed us to identify patterns of neural activity specifically associated with hypnotically induced paralysis, relative to voluntary inhibition during simulation or Nogo trials. We used a topographical EEG analysis technique to investigate both the spatial organization and the temporal sequence of neural processes activated in these different conditions, and to localize the underlying anatomical generators through minimum-norm methods. We found that preparatory activations were similar in all conditions, despite left hypnotic paralysis, indicating preserved motor intentions. A large P3-like activity was generated by voluntary inhibition during voluntary inhibition (Nogo), with neural sources in medial prefrontal areas, while hypnotic paralysis was associated with a distinctive topography activity during the same time-range and specific sources in right inferior frontal cortex. These results add support to the view that hypnosis might act by enhancing executive control systems mediated by right prefrontal areas, but does not produce paralysis via direct motor inhibition processes normally used for the voluntary suppression of actions.


International Journal of Clinical and Experimental Hypnosis | 2014

Hypnosis, Attachment, and Oxytocin:An Integrative Perspective 1

Vladimir Zelinka; Yann Cojan; Martin Desseilles

Abstract This article considers links between clinical hypnosis, attachment theory, and oxytocin. First, it proposes that commonalities between clinical hypnosis and attachment theory may improve our understanding of the hypnotherapeutic process. Then, it suggests that an integrative model unifying clinical hypnosis and attachment theory may constitute a link between clinical hypnosis and a neurobiological factor such as oxytocin. Finally, it discusses the implications of these hypotheses for clinical practice and future researches.

Collaboration


Dive into the Yann Cojan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Musel

University of Geneva

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge