Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yann Echelard is active.

Publication


Featured researches published by Yann Echelard.


Nature Biotechnology | 1999

Production of goats by somatic cell nuclear transfer

Alexander Baguisi; Esmail Behboodi; David Melican; Julie Pollock; Margaret M. Destrempes; Christine Cammuso; Jennifer L. Williams; Scott Nims; Catherine A. Porter; Patricia Midura; Monica J. Palacios; Sandra L. Ayres; R.S. Denniston; Michael L. Hayes; Carol Ziomek; Harry M. Meade; R.A. Godke; William G. Gavin; E.W. Overstrom; Yann Echelard

In this study, we demonstrate the production of transgenic goats by nuclear transfer of fetal somatic cells. Donor karyoplasts were obtained from a primary fetal somatic cell line derived from a 40-day transgenic female fetus produced by artificial insemination of a nontransgenic adult female with semen from a transgenic male. Live offspring were produced with two nuclear transfer procedures. In one protocol, oocytes at the arrested metaphase II stage were enucleated, electrofused with donor somatic cells, and simultaneously activated. In the second protocol, activated in vivo oocytes were enucleated at the telophase II stage, electrofused with donor somatic cells, and simultaneously activated a second time to induce genome reactivation. Three healthy identical female offspring were born. Genotypic analyses confirmed that all cloned offspring were derived from the donor cell line. Analysis of the milk of one of the transgenic cloned animals showed high-level production of human antithrombin III, similar to the parental transgenic line.


Journal of Immunological Methods | 1999

Transgenic milk as a method for the production of recombinant antibodies

Daniel Pollock; Joseph P. Kutzko; Eszter Birck-Wilson; Jennifer L. Williams; Yann Echelard; Harry M. Meade

Abstract Recombinant antibodies and their derivatives are increasingly being used as therapeutic agents. Clinical applications of antibodies often require large amounts of highly purified molecules, sometimes for multiple treatments. The development of very efficient expression systems is essential to the full exploitation of the antibody technology. Production of recombinant protein in the milk of transgenic dairy animals is currently being tested as an alternative to plasma fractionation for the manufacture of a number of blood factors (human antithrombin, human alpha-1-antitrypsin, human serum albumin, factor IX). The ability to routinely yield mg/ml levels of antibodies and the scale-up flexibility make transgenic production an attractive alternative to mammalian cell culture as a source of large quantities of biotherapeutics. The following review examines the potential of transgenic expression for the production of recombinant therapeutic antibodies.


Biology of Reproduction | 2003

Fertility and Germline Transmission of Donor Haplotype Following Germ Cell Transplantation in Immunocompetent Goats

Ali Honaramooz; Esmail Behboodi; Susan Megee; Susan A. Overton; Hannah Galantino-Homer; Yann Echelard; Ina Dobrinski

Abstract Transplantation of spermatogonial stem cells into syngeneic or immunosuppressed recipient mice or rats can result in donor-derived spermatogenesis and fertility. Recently, this approach has been employed to introduce a transgene into the male germline. Germ-cell transplantation in species other than laboratory rodents, if successful, holds great promise as an alternative to the inefficient methods currently available to generate transgenic farm animals that can produce therapeutic proteins in their milk or provide organs for transplantation to humans. To explore whether germ-cell transplantation could result in donor-derived spermatogenesis and fertility in immunocompetent recipient goats, testis cells were transplanted from transgenic donor goats carrying a human alpha-1 antitrypsin expression construct to the testes of sexually immature wild-type recipient goats. After puberty, sperm carrying the donor-derived transgene were detected in the ejaculates of two out of five recipients. Mating of one recipient resulted in 15 offspring, one of which was transgenic for the donor-derived transgene. This is the first report of donor cell-derived sperm production and transmission of the donor haplotype to the next generation after germ-cell transplantation in a nonrodent species. Furthermore, these results indicate that successful germ-cell transplantation is feasible between immunocompetent, unrelated animals. In the future, transplantation of genetically modified germ cells may provide a more efficient alternative for production of transgenic domestic animals.


Nature Medicine | 2000

The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells

Patrick Lawinger; Radjendirane Venugopal; Zong Sheng Guo; Anand Immaneni; Devjani Senguita; Wenying Lu; Luca Rastelli; Ana Marin Dias Carneiro; Victor A. Levin; Gregory N. Fuller; Yann Echelard; Sadhan Majumder

Medulloblastoma is the most malignant pediatric brain tumor. It is believed to originate from the undifferentiated external granule layer cells in the cerebellum, but the mechanism of tumorigenesis remains unknown. Here we studied three types of human medulloblastoma cells that express markers corresponding to different levels of neuronal differentiation. They expressed the neuronal repressor element 1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF; refs. 7–10) at very high levels compared with either neuronal progenitor NTera2 (NT2) cells or fully differentiated human neuron teratocarcinoma (hNT cells). To counter the effect of REST/NRSF, we used a recombinant transcription factor, REST–VP16, constructed by replacing repressor domains of REST/NRSF with the activation domain of viral protein (VP16). Transient expression of REST–VP16 in medulloblastoma cells was able to compete with the endogenous REST/NRSF for DNA binding and stimulate neuronal promoters. High-efficiency expression of REST–VP16 mediated by adenovirus vectors (Ad.REST–VP16) in medulloblastoma cells was able to counter REST/NRSF-mediated repression of neuronal promoters, stimulate expression of endogenous neuronal genes and trigger apoptosis through the activation of caspase cascades. Furthermore, intratumoral injection of Ad.REST–VP16 in established medulloblastoma tumors in nude mice inhibited their growth. Therefore, REST/NRSF may serve as a new target for therapeutic interventions for medulloblastoma through agents such as REST–VP16.


Current Biology | 2001

Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube

Tao Sun; Yann Echelard; Richard Lu; Dong-in Yuk; Sovann Kaing; Charles D. Stiles; David H. Rowitch

BACKGROUND Organizing signals such as Sonic hedgehog are thought to specify neuronal subtype identity by regulating the expression of homeodomain proteins in progenitors of the embryonic neural tube. One of these, Nkx2.2, is necessary and sufficient for the development of V3 interneurons. RESULTS We report that Olig genes, encoding basic helix-loop-helix (bHLH) proteins, are expressed in a subset of Nkx2.2 progenitors before the establishment of interneurons and oligodendroglial precursors. Gain-of-function analysis in transgenic mouse embryos indicates that Olig genes specifically inhibit the establishment of Sim1-expressing V3 interneurons. Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors. Colocalization of Olig and Nkx2.2 proteins at the dorsal extent of the Nkx2.2 expression domain is consistent with regulatory interactions that define the potential of progenitor cells in the border region. CONCLUSIONS Interactions between homeodomain and Olig bHLH proteins evidently regulate neural cell fate acquisition and diversification in the ventral neural tube. In particular, interactions between Olig and Nkx2.2 proteins inhibit V3 interneuron development and promote the formation of alternate cell types, including those expressing Sox10.


Biology of Reproduction | 2001

Cloned Transgenic Offspring Resulting from Somatic Cell Nuclear Transfer in the Goat: Oocytes Derived from Both Follicle-Stimulating Hormone-Stimulated and Nonstimulated Abattoir-Derived Ovaries

Brett C. Reggio; Aidita N. James; Heather L. Green; William G. Gavin; Esmail Behboodi; Yann Echelard; R. A. Godke

Abstract The use of nuclear transfer (NT) techniques to create transgenic offspring capable of producing valuable proteins may have a major impact on the pharmaceutical market. Our objective was to compare the in vivo developmental potential of NT embryos produced from the fusion of transgenic donor cells with cytoplasts prepared from either FSH-stimulated ovaries or nonstimulated abattoir-derived ovaries. Donor cells were prepared from a transgenic fetus carrying the gene for human antithrombin III as a marker and used within four to eight subpassages. Cells were serum deprived for 4 days prior to cytoplast transfer. Oocytes were enucleated by removing the metaphase plate using a DNA stain and epifluorescent illumination. Donor cells were fused to enucleated oocytes by electric pulse and then chemically activated. There was no difference in the number of transferable embryos produced from cytoplasts of FSH-stimulated ovaries or from the fusion of cytoplasts from abattoir ovaries, nor was there a difference in the number of pregnancies established per recipient with either treatment. All pregnancies from both groups culminated in the births of healthy female kids (five total). To our knowledge, this is the first report of cloned goats produced from NT using cytoplasts derived from abattoir ovaries.


Biology of Reproduction | 2000

Developmental Competence of Juvenile Calf Oocytes In Vitro and In Vivo: Influence of Donor Animal Variation and Repeated Gonadotropin Stimulation

M. Taneja; Peter E.J. Bols; Anneleen Van de Velde; Jyh-Cherng Ju; David Schreiber; Mark William Tripp; Howard Levine; Yann Echelard; J.W. Riesen; Xiangzhong Yang

Abstract Juvenile calf oocytes represent an untapped source of germ plasm for reproduction. Reports on the developmental competence of calf oocytes have been controversial. In this research, oocytes were recovered after gonadotropin stimulation from Holstein calves (N = 10) at 2–3 mo of age (2-mo cycle) and again at 4–5 mo of age (4-mo cycle). The in vitro developmental competence was measured, and prestimulation follicle numbers (for 2-mo cycle) and poststimulation follicle numbers (both cycles) were obtained. The number of antral follicles doubled after stimulation (23.4 ± 6.1 vs. 55.1 ± 16.1) for the 2-mo cycle and for the 4-mo cycle (47.4 ± 12.4). The number of follicles observed prior to stimulation in the 2-mo cycle was found to be highly correlated with the poststimulation oocyte recovery for both collection cycles (r = 0.95, 2-mo cycle; r = 0.81, 4-mo cycle). The majority (90–96%) of recovered oocytes were found to be usable for in vitro maturation and fertilization; of these, 41–42% cleaved and 10–11% developed to morulae or blastocysts. Eighty-four in vitro-produced embryos were transferred to synchronized recipients and resulted in 11 pregnancies, leading to 7 live (4 males, 3 females) and 2 dead (one male, one female) calves at full term. No significant differences were observed between the 2-mo and 4-mo collection cycles; however, 73% of the total pregnancies resulted from the 2-mo cycle. All pregnancies resulted from embryos of high-responding donors. The high correlation between the number of follicles prior to stimulation and the poststimulation response suggests the possibility of screening calves prior to stimulation for routine embryo production.


The FASEB Journal | 2008

Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation

Ali Honaramooz; Susan Megee; Wenxian Zeng; Margret M. Destrempes; Susan A. Overton; Jinping Luo; Hannah Galantino-Homer; Mark Modelski; Fangping Chen; Stephen Blash; David Melican; William G. Gavin; Sandra L. Ayres; Fang Yang; P. Jeremy Wang; Yann Echelard; Ina Dobrinski

We explored whether exposure of mammalian germ line stem cells to adeno‐associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ cell‐depleted syngeneic recipient testes, resulting in colonization of the recipient testes by transgenic donor cells. Mating of recipient males to wild‐type females yielded 10% transgenic offspring. To broaden the approach to nonrodent species, AAV‐transduced germ cells from goats were transplanted to recipient males in which endogenous germ cells had been depleted by fractionated testicular irradiation. Transgenic germ cells colonized recipient testes and produced transgenic sperm. When semen was used for in vitro fertilization (IVF), 10% of embryos were transgenic. Here, we report for the first time that AAV‐mediated transduction of mammalian germ cells leads to transmission of the transgene through the male germ line. Equally important, this is also the first report of transgenesis via germ cell transplantation in a nonrodent species, a promising approach to generate transgenic large animal models for biomedical research.—Honaramooz, A., Megee, S., Zeng, W., Destrempes, M.M., Overton, S.A., Luo, J., Galantino‐Homer, H., Modelski, M., Chen, F., Blash, S., Melican, D. T., Gavin, W. G., Ayres, S., Yang, F., Wang, P. J., Echelard, Y., Dobrinski, I. Adeno‐associated virus (AAV) ‐mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J. 22, 374–382 (2008)


Theriogenology | 2001

Development of goat embryos after in vitro fertilization and parthenogenetic activation by different methods

E.M. Ongeri; C.L. Bormann; Robin E. Butler; David Melican; William G. Gavin; Yann Echelard; Rebecca L. Krisher; Esmail Behboodi

Effective activation protocols that can be used during nuclear transfer investigations in goats need to be developed. We compared the development of IVF goat embryos with those of nonfertilized parthogenetically developing oocytes activated by treatment with either ionomycin or ethanol, both followed by immediate exposure to 6-diethylaminopurine (6-DMAP). Cumulus oocyte complexes (COCs) recovered from abattoir goat ovaries were either matured in a conventional laboratory incubator or placed in pre-equilibrated maturation medium and shipped overnight in a battery-operated dry incubator to another laboratory. Mature COCs were allocated randomly to one of three treatment groups. Group 1 oocytes (n=169 shipped, n=253 not shipped) were fertilized in vitro at 24 h postmaturation (hpm). The remaining COCs were activated at 28 hpm in either ionomycin (Group 2: n=362 shipped, n=202 not shipped), or ethanol (Group 3: n=263 shipped, n=249 not shipped). Activated oocytes were immediately incubated in 6-DMAP for 4 h. Blastocyst development was evaluated on Day 8 post-insemination/activation. Percent cleavage was comparable in shipped and nonshipped oocytes and in all treatment groups. In both shipped and nonshipped oocytes, parthenotes developing from ionomycin- and ethanol-activated oocytes had significantly greater blastocyst development (P<0.01) compared to IVF embryos (28.5 +/- 3.0, 27.4 +/- 2.8, 10.3 +/- 3.0, respectively for the nonshipped oocytes and 9.9 +/- 2.1, 10.3 +/- 2.4, 3.7 +/- 4.7 respectively for the shipped oocytes). Shipped oocytes had lower blastocyst development compared to nonshipped oocytes in the three treatment groups. The mean blastocyst cell number was not statistically different between shipped and nonshipped oocytes or among treatment groups, suggesting that all were equally viable.


Current Opinion in Biotechnology | 1996

Recombinant protein production in transgenic animals

Yann Echelard

The engineering of animals for recombinant protein production has gone beyond the stage of identifying proper regulatory sequences. Efforts are now spent on the generation of transgenic animals that process heterologous proteins more efficiently. Another line of research is the development of strategies aimed at bypassing pronuclear microinjection.

Collaboration


Dive into the Yann Echelard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew P. McMahon

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge