Yann Foucault
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yann Foucault.
Science of The Total Environment | 2012
Eva Schreck; Yann Foucault; Géraldine Sarret; Sophie Sobanska; Lauric Cécillon; Maryse Castrec-Rouelle; Gaëlle Uzu; Camille Dumat
Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO(3) and organic Pb). Some compounds were internalized in their primary form (PbSO(4)) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter.
Chemosphere | 2011
Eva Schreck; Yann Foucault; Florence Geret; Philippe Pradere; Camille Dumat
Ultrafine particulate matters enriched with metals are emitted into the atmosphere by industrial activities and can impact terrestrial and aquatic ecosystems. Thus, this study investigated the environmental effects of process particles from a lead-recycling facility after atmospheric deposition on soils and potential run-off to surface waters. The toxicity of lead-enriched PM for ecosystems was investigated on lettuce and bacteria by (i) germination tests, growth assays, lead transfer to plant tissues determination and (ii) Microtox analysis. The influence of ageing and soil properties on metal transfer and ecotoxicity was studied using three different soils and comparing various aged, spiked or historically long-term polluted soils. Finally, lead availability was assessed by 0.01 M CaCl(2) soil extraction. The results showed that process PM have a toxic effect on lettuce seedling growth and on Vibrio fischeri metabolism. Soil-PM interactions significantly influence PM ecotoxicity and bioavailability; the effect is complex and depends on the duration of ageing. Solubilisation or stabilisation processes with metal speciation changes could be involved. Finally, Microtox and phytotoxicity tests are sensitive and complementary tools for studying process PM ecotoxicity.
Environmental Pollution | 2013
Thibaut Leveque; Yvan Capowiez; Eva Schreck; Christophe Mazzia; Mélanie Auffan; Yann Foucault; Annabelle Austruy; Camille Dumat
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation.
Chemosphere | 2013
Yann Foucault; Thibaut Leveque; Tiantian Xiong; Eva Schreck; Annabelle Austruy; Muhammad Shahid; Camille Dumat
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.
Journal of Environmental Quality | 2014
Tiantian Xiong; Thibault Leveque; Muhammad Shahid; Yann Foucault; Stéphane Mombo; Camille Dumat
When plants are exposed to airborne particles, they can accumulate metals in their edible portions through root or foliar transfer. There is a lack of knowledge on the influence of plant exposure conditions on human bioaccessibility of metals, which is of particular concern with the increase in urban gardening activities. Lettuce, radish, and parsley were exposed to metal-rich ultrafine particles from a recycling factory via field atmospheric fallouts or polluted soil. Total lead (Pb) and cadmium (Cd) concentrations in of the edible plant parts and their human bioaccessibility were measured, and Pb translocation through the plants was studied using Pb isotopic analysis. The Pb and Cd bioaccessibility measured for consumed parts of the different polluted plants was significantly higher for root exposure (70% for Pb and 89% for Cd in lettuce) in comparison to foliar exposure (40% for Pb and 69% for Cd in lettuce). The difference in metal bioaccessibility could be linked to the metal compartmentalization and speciation changes in relation to exposure conditions. Metal nature strongly influences the measured bioaccessibility: Cd presents higher bioaccessibility in comparison to Pb. In the case of foliar exposure, a significant translocation of Pb from leaves toward the roots was observed. To conclude, the type of pollutant and the method of exposure significantly influences the phytoavailability and human bioaccessibility of metals, especially in relation to the contrasting phenomena involved in the rhizosphere and phyllosphere. The conditions of plant exposure must therefore be taken into account for environmental and health risk assessment.
Journal of Hazardous Materials | 2013
Yann Foucault; Marie-José Durand; Karine Tack; Eva Schreck; Florence Geret; Thibaut Leveque; Philippe Pradere; Sylvaine Goix; Camille Dumat
With the rise of sustainable development, rehabilitation of brownfield sites located in urban areas has become a major concern. Management of contaminated soils in relation with environmental and sanitary risk concerns is therefore a strong aim needing the development of both useful tools for risk assessment and sustainable remediation techniques. For soils polluted by metals and metalloids (MTE), the criteria for landfilling are currently not based on ecotoxicological tests but on total MTE concentrations and leaching tests. In this study, the ecotoxicity of leachates from MTE polluted soils sampled from an industrial site recycling lead-acid batteries were evaluated by using both modified Escherichia coli strains with luminescence modulated by metals and normalized Daphnia magna and Alivibrio fischeri bioassays. The results were clearly related to the type of microorganisms (crustacean, different strains of bacteria) whose sensitivity varied. Ecotoxicity was also different according to sample location on the site, total concentrations and physico-chemical properties of each soil. For comparison, standard leaching tests were also performed. Potentially phytoavailable fraction of MTE in soils and physico-chemical measures were finally performed in order to highlight the mechanisms. The results demonstrated that the use of a panel of microorganisms is suitable for hazard classification of polluted soils. In addition, calculated eco-scores permit to rank the polluted soils according to their potentially of dangerousness. Influence of soil and MTE characteristics on MTE mobility and ecotoxicity was also highlighted.
Environmental Pollution | 2014
Thibaut Leveque; Yvan Capowiez; Eva Schreck; Tiantian Xiong; Yann Foucault; Camille Dumat
The influence of earthworm activity on soil-to-plant metal transfer was studied by carrying out six weeks mesocosms experiments with or without lettuce and/or earthworms in soil with a gradient of metal concentrations due to particles fallouts. Soil characteristics, metal concentrations in lettuce and earthworms were measured and soil porosity in the mesocosms was determined. Earthworms increased the soil pH, macroporosity and soil organic matter content due to the burying of wheat straw provided as food. Earthworm activities increased the metals concentrations in lettuce leaves. Pb and Cd concentrations in lettuce leaves can increase up to 46% with earthworm activities … These results and the low correlation between estimated by CaCl2 and EDTA and measured pollutant phytoavailability suggest that earthworm bioturbation was the main cause of the increase. Bioturbation could affect the proximity of pollutants to the roots and soil organic matter.
Environmental Pollution | 2013
Eva Schreck; Christophe Laplanche; Marina Le Guédard; Jean-Jacques Bessoule; Annabelle Austruy; Tiantian Xiong; Yann Foucault; Camille Dumat
We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants.
Science of The Total Environment | 2015
Thibaut Leveque; Yvan Capowiez; Eva Schreck; Stéphane Mombo; Christophe Mazzia; Yann Foucault; Camille Dumat
The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1).
Journal of Soils and Sediments | 2014
Muhammad Shahid; Tiantian Xiong; Nasir Masood; Tibo Leveque; Katelle Quenea; Annabelle Austruy; Yann Foucault; Camille Dumat