Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yann Tremblay is active.

Publication


Featured researches published by Yann Tremblay.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer

Scott A. Shaffer; Yann Tremblay; Henri Weimerskirch; Darren Scott; David R. Thompson; Paul M. Sagar; Henrik Moller; Graeme A. Taylor; David G. Foley; Barbara A. Block; Daniel P. Costa

Electronic tracking tags have revolutionized our understanding of broad-scale movements and habitat use of highly mobile marine animals, but a large gap in our knowledge still remains for a wide range of small species. Here, we report the extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature. Tracks (262 ± 23 days) reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037 ± 9,779 km roundtrip, the longest animal migration ever recorded electronically. Each shearwater made a prolonged stopover in one of three discrete regions off Japan, Alaska, or California before returning to New Zealand through a relatively narrow corridor in the central Pacific Ocean. Transit rates as high as 910 ± 186 km·day−1 were recorded, and shearwaters accessed prey resources in both the Northern and Southern Hemisphere’s most productive waters from the surface to 68.2 m depth. Our results indicate that sooty shearwaters integrate oceanic resources throughout the Pacific Basin on a yearly scale. Sooty shearwater populations today are declining, and because they operate on a global scale, they may serve as an important indicator of climate change and ocean health.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions

Martin Biuw; Lars Boehme; Christophe Guinet; Mark A. Hindell; Daniel P. Costa; J.-B. Charrassin; Fabien Roquet; Frédéric Bailleul; Michael P. Meredith; Sally E. Thorpe; Yann Tremblay; Birgitte I. McDonald; Young-Hyang Park; Stephen R. Rintoul; Nl Bindoff; Michael E. Goebel; Daniel E. Crocker; Phil Lovell; J. Nicholson; F. Monks; Michael A. Fedak

Responses by marine top predators to environmental variability have previously been almost impossible to observe directly. By using animal-mounted instruments simultaneously recording movements, diving behavior, and in situ oceanographic properties, we studied the behavioral and physiological responses of southern elephant seals to spatial environmental variability throughout their circumpolar range. Improved body condition of seals in the Atlantic sector was associated with Circumpolar Deep Water upwelling regions within the Antarctic Circumpolar Current, whereas High-Salinity Shelf Waters or temperature/salinity gradients under winter pack ice were important in the Indian and Pacific sectors. Energetic consequences of these variations could help explain recently observed population trends, showing the usefulness of this approach in examining the sensitivity of top predators to global and regional-scale climate variability.


The Journal of Experimental Biology | 2006

Interpolation of animal tracking data in a fluid environment

Yann Tremblay; Scott A. Shaffer; Shannon L. Fowler; Carey E. Kuhn; Birgitte I. McDonald; Michael J. Weise; Charle-André Bost; Henri Weimerskirch; Daniel E. Crocker; Michael E. Goebel; Daniel P. Costa

SUMMARY Interpolation of geolocation or Argos tracking data is a necessity for habitat use analyses of marine vertebrates. In a fluid marine environment, characterized by curvilinear structures, linearly interpolated track data are not realistic. Based on these two facts, we interpolated tracking data from albatrosses, penguins, boobies, sea lions, fur seals and elephant seals using six mathematical algorithms. Given their popularity in mathematical computing, we chose Bézier, hermite and cubic splines, in addition to a commonly used linear algorithm to interpolate data. Performance of interpolation methods was compared with different temporal resolutions representative of the less-precise geolocation and the more-precise Argos tracking techniques. Parameters from interpolated sub-sampled tracks were compared with those obtained from intact tracks. Average accuracy of the interpolated location was not affected by the interpolation method and was always within the precision of the tracking technique used. However, depending on the species tested, some curvilinear interpolation algorithms produced greater occurrences of more accurate locations, compared with the linear interpolation method. Total track lengths were consistently underestimated but were always more accurate using curvilinear interpolation than linear interpolation. Curvilinear algorithms are safe to use because accuracy, shape and length of the tracks are either not different or are slightly enhanced and because analyses always remain conservative. The choice of the curvilinear algorithm does not affect the resulting track dramatically so it should not preclude their use. We thus recommend using curvilinear interpolation techniques because of the more realistic fluid movements of animals. We also provide some guidelines for choosing an algorithm that is most likely to maximize track quality for different types of marine vertebrates.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals

J.-B. Charrassin; Mark A. Hindell; Stephen R. Rintoul; Fabien Roquet; Serguei Sokolov; Martin Biuw; Daniel P. Costa; Lars Boehme; Phil Lovell; R Coleman; R. Timmermann; A. Meijers; Michael P. Meredith; Young-Hyang Park; Frédéric Bailleul; Michael E. Goebel; Yann Tremblay; Charles-André Bost; Clive R. McMahon; Iain C. Field; Michael A. Fedak; Christophe Guinet

Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Dynamic habitat models: using telemetry data to project fisheries bycatch

Ramūnas Žydelis; Rebecca L. Lewison; Scott A. Shaffer; Jeffrey E. Moore; Andre M. Boustany; Jason J. Roberts; Michelle Sims; Daniel C. Dunn; Benjamin D. Best; Yann Tremblay; Michelle A. Kappes; Patrick N. Halpin; Daniel P. Costa; Larry B. Crowder

Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.


Journal of Animal Ecology | 2009

Time to eat: measurements of feeding behaviour in a large marine predator, the northern elephant seal Mirounga angustirostris

Carey E. Kuhn; Daniel E. Crocker; Yann Tremblay; Daniel P. Costa

1. The at-sea behaviour of marine predators is often described based on changes in behavioural states, such as transit, searching, and feeding. However, to distinguish between these behaviours, it is necessary to know the actual functions of the behaviours recorded. Specifically, to understand the foraging behaviour of marine predators, it is necessary to measure prey consumption. Therefore, the at-sea feeding behaviour of northern elephant seals (N = 13) was examined using satellite transmitters, time-depth recorders, and stomach temperature recorders. In addition, stomach temperature telemetry allowed for the validation of indirect measures of feeding behaviour used for marine predators, including decreases in transit rate and changes in dive shape. 2. Feeding data were recorded for the early phase of the migration (2.2-21 days). The first feeding events occurred shortly after animals departed (4.0 +/- 1.5 h) and close to the rookery (58.6 +/- 21.9 km), but these feedings were followed by extended periods without prey consumption (14.5 +/- 2.5 h). Continuous (bout) feeding did not occur until on average 7.5 +/- 1.8 days after the females left the rookery. Females showed significant differences in the feeding rate while feeding in a bout (1.3-2.1 feeding events hour(-1)). 3. There was a significant negative relationship between interpolated transit rate and feeding events (r(2) = 0.62, P < 0.01). Feeding, which was associated with all dive types, occurred most often during the foraging type dive shape (74.2%). Finally, successful feeding only occurred between 18-24% of the time when females displayed the foraging type dive shape suggesting that the use of dive shape alone, while indicative of behaviours associated with foraging (searching and catching prey) overestimates actual feeding behaviour. 4. This study showed females not only feed extensively during the early migration, but there was individual variation in both foraging locations and foraging success. In addition, by combining direct and indirect measures of feeding, this study has provided support for the use of foraging indicators in marine predators.


Polar Biology | 1997

Fish prey of Antarctic fur seals Arctocephalus gazella at Ile de Croy, Kerguelen

Yves Cherel; Christophe Guinet; Yann Tremblay

The composition of Antarctic fur seal prey was assessed through analysis of scats collected in March 1994 on Ile de Croy, Iles Nuageuses. Fish remains predominated in samples, occurring in 95% of droppings. A total of 968 otoliths allowed the identification of 16 fish species. Myctophid fish (12 species) dominated the diet both by number (94% of the otoliths) and by fish reconstituted mass (76%). Three fish species constituted together 87% of the reconstituted mass: the myctophids Gymnoscopelus nicholsi (52%) and G. piabilis (12%), and the channichthyid Champsocephalus gunnari (23%). Prey distribution suggests that during late summer seals forage in upper slope waters in the northeast of the Kerguelen Archipelago.


PLOS ONE | 2009

A parsimonious approach to modeling animal movement data.

Yann Tremblay; Patrick W. Robinson; Daniel P. Costa

Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models), resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (<0.94°), and 90% were less than 199.8 km (<1.80°). Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient, promising extensive utilization in future research.


Antarctic Science | 2007

Chick-rearing Crozet shags ( Phalacrocorax melanogenis ) display sex-specific foraging behaviour

Timothée R. Cook; Yves Cherel; Charles-André Bost; Yann Tremblay

We compared, for the first time the foraging ecology of both sexes of the blue-eyed Crozet shag (Phalacrocorax melanogenis), using ventrally attached time depth recorders to investigate differences in time-budget and diving behaviour between the sexes during the chick-rearing. Males were the only ones to dive over 55 m. Females dived mostly between 15 and 35 m, a zone poorly used by males. Females foraged mostly in the morning and males in the afternoon. Females also spent one hour longer diving per day compared to males. There were differences in diving strategies and diet, indicating that both sexes targeted essentially the same prey, but of different sizes, males specializing in bigger fish. Although the relationship between sexual dimorphism and diving depth was positive (larger animals diving deeper), evidence suggests that body size (in terms of oxygen storage capacity) is not sufficient to explain so many differences in foraging ecology. Instead, we propose prey size (possibly driven by a limitation of prey handling ability in relation to beak size) could be an essential factor in shaping the male/female behavioural segregation in the Crozet shag; future studies should concentrate on this particular aspect.


Frontiers in Ecology and the Environment | 2012

Meta-population evidence of oriented chain migration in northern gannets (Morus bassanus)

Jérôme Fort; Emeline Pettex; Yann Tremblay; Svein-Håkon Lorentsen; Stefan Garthe; Stephen C. Votier; Jean Baptiste Pons; François Siorat; Robert W. Furness; W. James Grecian; Stuart Bearhop; William A. Montevecchi; David Grémillet

Although oriented migrations have been identified in many terrestrial bird species, the post-breeding-season movements of seabirds are generally regarded as dispersive. We used geolocator tags to reveal post-breeding movements and winter distribution of northern gannets (Morus bassanus) at a meta-population scale. By focusing on five breeding colonies of European gannets, we show that their breeding and wintering grounds are connected by a major flyway running along the coasts of Western Europe and Africa. Moreover, maximum winter distance to colony was similar across colonies despite their wide latitudinal range. In contrast with the general opinion that large pelagic birds such as gannets have unlimited ranges beyond the breeding season, our findings strongly suggest oriented chain migration in northern gannets (a pattern in which populations move uniformly southward) and highlight the benefit of meta-population approaches for studying seabird movements. We argue that the inclusion of such processes in ocean management plans is essential to improve efforts in marine biodiversity conservation.

Collaboration


Dive into the Yann Tremblay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Cherel

University of La Rochelle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carey E. Kuhn

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Sophie Bertrand

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothée R. Cook

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge