Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanna Liu is active.

Publication


Featured researches published by Yanna Liu.


BMC Cancer | 2006

Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein.

Timothy M. Pawlik; David H. Hawke; Yanna Liu; Savitri Krishnamurthy; Herbert A. Fritsche; Kelly K. Hunt; Henry M. Kuerer

BackgroundIsotope-coded affinity tag (ICAT) tandem mass spectrometry (MS) allows for qualitative and quantitative analysis of paired protein samples. We sought to determine whether ICAT technology could quantify and identify differential expression of tumor-specific proteins in nipple aspirate fluid (NAF) from the tumor-bearing and contralateral disease-free breasts of patients with unilateral early-stage breast cancer.MethodsPaired NAF samples from 18 women with stage I or II unilateral invasive breast carcinoma and 4 healthy volunteers were analyzed using ICAT labeling, sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE), liquid chromatography, and MS. Proteins were identified by sequence database analysis. Western blot analysis of NAF from an independent sample set from 12 women (8 with early-stage breast cancer and 4 healthy volunteers) was also performed.Results353 peptides were identified from tandem mass spectra and matched to peptide sequences in the National Center for Biotechnology Information database. Equal numbers of peptides were up- versus down-regulated. Alpha2HS-glycoprotein [Heavy:Light (H:L) ratio 0.63] was underexpressed in NAF from tumor-bearing breasts, while lipophilin B (H:L ratio 1.42), beta-globin (H:L ratio 1.98), hemopexin (H:L ratio 1.73), and vitamin D-binding protein precursor (H:L ratio 1.82) were overexpressed. Western blot analysis of pooled samples of NAF from healthy volunteers versus NAF from women with breast cancer confirmed the overexpression of vitamin D-binding protein in tumor-bearing breasts.ConclusionICAT tandem MS was able to identify and quantify differences in specific protein expression between NAF samples from tumor-bearing and disease-free breasts. Proteomic screening techniques using ICAT and NAF may be used to find markers for diagnosis of breast cancer.


Cancer Gene Therapy | 2006

mda-7 gene transfer sensitizes breast carcinoma cells to chemotherapy, biologic therapies and radiotherapy: correlation with expression of bcl-2 family members.

Sunil Chada; Abner M. Mhashilkar; Yanna Liu; T. Nishikawa; Dora Bocangel; M. Zheng; Stephan A. Vorburger; A. Pataer; Stephen G. Swisher; Rajagopal Ramesh; K. Kawase; Raymond E. Meyn; Kelly K. Hunt

Current therapies used in the treatment of breast cancer are limited by systemic toxicity, rapid drug metabolism and intrinsic and acquired drug resistance. We have previously shown that adenoviral-mediated transfer of the melanoma differentiation-associated gene-7 (mda-7) elicits growth inhibition and apoptosis in various tumor types. Here, we evaluate the effects of Ad-mda7, alone and in combination with other therapies, against a panel of nine breast tumor cell lines and their normal counterparts; we report selective Ad-mda7-mediated p53-independent growth inhibition, G2/M cell cycle arrest, and apoptosis. In vivo, Ad-mda7 induced p53-independent tumor growth inhibition (P<0.004) in multiple xenograft models. We then evaluated the combination of Ad-mda7 with agents commonly used to treat breast cancer: radiotherapy (XRT), Tamoxifen, Taxotere, Adriamycin, and Herceptin. These agents exhibit diverse modes of action, including formation of bulky adducts, inhibition of DNA replication (Adriamycin, XRT), damage to microtubules (Taxotere), nonsteroidal estrogen antagonists (Tamoxifen), or Her2/neu receptor blockade (Herceptin). Treated with conventional anticancer drugs or radiation, MDA-7-expressing cells display additive or synergistic cytotoxicity and apoptosis that correlates with decreased BCL-2 expression and BAX upregulation. In vivo, animals that received Ad-mda7 and XRT underwent significant reduction of tumor growth (P<0.002). This is the first report of the synergistic effects of Ad-mda7 combined with chemotherapy or radiotherapy on human breast carcinoma cells.


Cell Cycle | 2009

Low molecular weight cyclin E is specific in breast cancer and is associated with mechanisms of tumor progression.

Hannah Wingate; Agnes Puskas; MyLinh T. Duong; Tuyen Bui; Dana Richardson; Yanna Liu; Susan L. Tucker; Carolyn S. Van Pelt; Laurent Meijer; Kelly K. Hunt; Khandan Keyomarsi

Low molecular weight (LMW) isoforms of cyclin E are posttranslationally generated in breast cancer cells and are associated with aggressive disease and poor prognosis. In this study, the specificity of LMW cyclin E to cancer cells was determined by measuring cyclin E expression in tumor and non-tumor tissue from 340 breast cancer patients. Our results reveal the LMW isoforms were detected significantly more frequently in breast tumor tissue than in adjacent non-tumor breast tissues (p


Cancer Gene Therapy | 2006

Combinatorial synergy induced by adenoviral-mediated mda-7 and Herceptin in Her-2+ breast cancer cells

Dora Bocangel; M. Zheng; Abner M. Mhashilkar; Yanna Liu; Rajagopal Ramesh; Kelly K. Hunt; Sunil Chada

The melanoma differentiation-associated gene-7 (mda-7) is a member of the interleukin-10 cytokine family and a novel tumor suppressor gene. Adenoviral-mediated mda-7 (Ad-mda7) gene transfer has tumor-specific growth inhibitory and proapoptotic effects in a broad spectrum of cancer cells. In breast cancer cells, adenoviral-induced mda-7 expression triggers antiproliferative effects by downregulation of survival signals, such as Bcl-2 and Akt. The anti-human epidermal growth factor receptor-2 (Her-2) monoclonal antibody, Trastuzumab (Herceptin), increases the sensitivity of Her-2/neu-overexpressing breast cancer cells to chemotherapeutic agents and radiotherapy. In this study, we evaluate the effects of treatment with Ad-mda7 and Herceptin combination therapy in a panel of Her-2/neu-overexpressing cell lines, and in established tumors in nude mice. Compared to individual treatments, the combination of Ad-mda7 and Herceptin elicits supra-additive antitumor activity in Her-2/neu-overexpressing tumor cell lines: increased cell death, cell cycle block and apoptosis. The Ad-mda7 and Herceptin interaction was shown to be synergistic by isobologram analysis. Ad-mda7 does not alter cell surface Her-2/neu levels, but the combination of Ad-mda7+Herceptin results in increased expression of cell surface E-cadherin with concomitant translocation of β-catenin from the nucleus to the cell membrane. In vivo, the combination of Ad-mda7 and Herceptin showed significantly increased antitumor activity (P<0.003) against Her-2/neu-overexpressing tumors. These data suggest that the combination of Ad-mda7 with Herceptin may be a novel therapy for breast cancer patients whose tumors overexpress Her-2/neu. The observed synergistic effect may improve treatment options for otherwise poorly responsive, Her-2-positive, breast cancer patients.


Clinical Cancer Research | 2007

The Double-Stranded RNA-Activated Protein Kinase Mediates Radiation Resistance in Mouse Embryo Fibroblasts through Nuclear Factor κB and Akt Activation

Urs von Holzen; Abujiang Pataer; Uma Raju; Dora Bocangel; Stephan A. Vorburger; Yanna Liu; Xiaolin Lu; Jack A. Roth; Bharat B. Aggarwal; Glen N. Barber; Khandan Keyomarsi; Kelly K. Hunt; Stephen G. Swisher

Purpose: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2α (eIF-2α). There have been no reports to date about the role of PKR in radiation sensitivity. Experimental Design: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-κB (NF-κB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. Results: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase–mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR−/− MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-κB and Akt because both NF-κB and Akt are activated after ionizing radiation in PKR+/+ but not PKR−/− cells. Conclusions: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-κB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.


Breast Cancer Research | 2013

Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer

Kelly K. Hunt; Hannah Wingate; Tomoya Yokota; Yanna Liu; Gordon B. Mills; Fan Zhang; Bingliang Fang; Chun Hui Su; Ming Zhang; Min Yi; Khandan Keyomarsi

IntroductionElafin is an elastase-specific inhibitor with increased transcription in normal mammary epithelial cells compared to mammary carcinoma cells. In this report, we test the hypothesis that inhibition of elastase, through induction of elafin, leads to inhibition of human breast cancer cell viability and, therefore, predicts survival in breast cancer patients.MethodsPanels of normal and immortalized breast epithelial cells, along with breast carcinoma cells, were used to examine the impact of adenoviral-mediated elafin expression or shRNA-mediated inhibition of elastase on the growth of cells and xenografts in nude mice. To determine the prognostic significance of decreased elafin in patients with invasive breast cancer, previously published gene array datasets were interrogated.ResultsElafin expression had no effect on non-tumorigenic cells but resulted in marked inhibition of cell growth in breast cancer cell lines. Control-treated xenografts generated a tumor burden that necessitated sacrifice within one month of initial treatment, whereas xenograft-bearing mice treated with Ad-Elafin were alive at eight months with marked reduction in tumor growth. Elastase inhibition mimicked these results, showing decreased tumor cell growth in vitro and in vivo. Low expression of elafin gene correlated with significantly reduced time to relapse, and when combined with high expression of elastase gene was associated with decreased survival in breast cancer patients.ConclusionOur data suggest that elafin plays a direct role in the suppression of tumors through inhibition of elastase and thus serves as a prognostic indicator for breast cancer patients.


Cancer Research | 2007

Differential Regulation of Elafin in Normal and Tumor-Derived Mammary Epithelial Cells Is Mediated by CCAAT/Enhancer Binding Protein β

Tomoya Yokota; Tuyen Bui; Yanna Liu; Min Yi; Kelly K. Hunt; Khandan Keyomarsi

CCAAT/enhancer binding protein beta (C/EBP beta) is a transcription factor implicated in the control of development, differentiation, and proliferation of mammary epithelial cells. However, it remains unclear how C/EBP beta is involved in tumor suppression through its interaction with specific downstream genes in breast cancer. Tumor cells overexpress serine proteases, which play crucial roles in tumor invasion and metastasis. Elafin is an endogenous serine protease inhibitor and is transcriptionally down-regulated in most tumor cell lines. In this study, we show that C/EBP beta is differentially expressed in normal versus tumor cell lines and normal adjacent versus tumor tissues obtained from breast cancer patients. We identified elafin as a downstream effector of C/EBP beta and show that elafin is also differentially regulated between normal and tumor cells. The mechanism by which C/EBP beta regulates elafin expression is through its direct interaction with the elafin promoter. There are three C/EBP beta binding sites involved in the elafin promoter activity, and the overexpression of C/EBP beta transactivates the elafin gene through these sites in tumor cells. RNA interference studies in normal cells further evidenced the requirement of the C/EBP beta for the elafin expression and negative feedback loop between C/EBP beta and elafin. We suggest that elafin is a novel substrate of C/EBP beta, and alterations in C/EBP beta isoforms result in their differential binding to the elafin promoter, leading to the altered expression of the elafin between normal and tumor cells.


Annals of Surgical Oncology | 2003

The Mitochondrial Apoptosis-Inducing Factor Plays a Role in E2F-1–Induced Apoptosis in Human Colon Cancer Cells

Stephan A. Vorburger; Abujiang Pataer; Kazumi Yoshida; Yanna Liu; Xiaolin Lu; Stephen G. Swisher; Kelly K. Hunt

Background: Overexpression of the transcription factor E2F-1 provokes apoptosis in cancer cells; the mechanism, however, is not completely understood. We sought to evaluate E2F-1 gene therapy in human colon cancer and to investigate the apoptotic pathway involved.Methods: Adenoviral vectors were used to transfect the E2F-1 gene (Ad5E2F-1) or the control gene luciferase (Ad5Luc) into four human colon carcinoma cell lines. Apoptosis was confirmed by flow cytometry and poly (ADP-ribose) polymerase cleavage. Expression of apoptotic factors was determined with Western blot analysis. Inhibitory assays were used to determine the involvement of caspases in the apoptotic pathway.Results: Overexpression of E2F-1 was evident in all cells treated with Ad5E2F-1; upregulation of Bcl-2, and activation of caspases were noted. The apoptosis-inducing factor in the cytosolic fraction was markedly upregulated after Ad5E2F-1 treatment. E2F-1 overexpression inhibited proliferation and induced significant apoptosis in all cell lines (P < .005). This apoptotic response could be only partially blocked by caspase inhibitors.Conclusions: These findings demonstrate that E2F-1 induces apoptosis and inhibits proliferation in human colon cancer cell lines. The marked upregulation of apoptosis-inducing factor and the fact that E2F-1–induced apoptosis is incompletely blocked by caspase inhibitors suggest a caspase-independent pathway of E2F-1–mediated apoptosis, reported here for the first time.


Molecular Cancer Therapeutics | 2017

CDK4/6 Inhibitors Sensitize Rb-positive Sarcoma Cells to Wee1 Kinase Inhibition through Reversible Cell-Cycle Arrest

Ashleigh M. Francis; Angela Alexander; Yanna Liu; Smruthi Vijayaraghavan; Kwang Hui Low; Dong Yang; Tuyen Bui; Neeta Somaiah; Vinod Ravi; Khandan Keyomarsi; Kelly K. Hunt

Research into the biology of soft tissue sarcomas has uncovered very few effective treatment strategies that improve upon the current standard of care which usually involves surgery, radiation, and chemotherapy. Many patients with large (>5 cm), high-grade sarcomas develop recurrence, and at that point have limited treatment options available. One challenge is the heterogeneity of genetic drivers of sarcomas, and many of these are not validated targets. Even when such genes are tractable targets, the rarity of each subtype of sarcoma makes advances in research slow. Here we describe the development of a synergistic combination treatment strategy that may be applicable in both soft tissue sarcomas as well as sarcomas of bone that takes advantage of targeting the cell cycle. We show that Rb-positive cell lines treated with the CDK4/6 inhibitor palbociclib reversibly arrest in the G1 phase of the cell cycle, and upon drug removal cells progress through the cell cycle as expected within 6–24 hours. Using a long-term high-throughput assay that allows us to examine drugs in different sequences or concurrently, we found that palbociclib-induced cell-cycle arrest poises Rb-positive sarcoma cells (SK-LMS1 and HT-1080) to be more sensitive to agents that work preferentially in S–G2 phase such as doxorubicin and Wee1 kinase inhibitors (AZD1775). The synergy between palbociclib and AZD1775 was also validated in vivo using SK-LMS1 xenografts as well as Rb-positive patient-derived xenografts (PDX) developed from leiomyosarcoma patients. This work provides the necessary preclinical data in support of a clinical trial utilizing this treatment strategy. Mol Cancer Ther; 16(9); 1751–64. ©2017 AACR.


Cancer Gene Therapy | 2011

MDA-7 results in downregulation of AKT concomitant with apoptosis and cell cycle arrest in breast cancer cells.

V. Valero; H. Wingate; S. Chada; Yanna Liu; F. Palalon; G. Mills; K. Keyomarsi; Kk K. Hunt

The melanoma differentiation-associated gene-7 (mda-7) is a known mediator of apoptosis in cancer cells but not in normal cells. We hypothesized that MDA-7 interferes with the prosurvival signaling pathways that are commonly altered in cancer cells to induce growth arrest and apoptosis. We also identified the cell signaling pathways that are antagonized by MDA-7 leading to apoptosis. Using an adenoviral expression system, mda-7 was introduced into the breast cancer cell lines SKBr3, MCF-7 and MDA-MB-468, each with a different estrogen receptor (ER) and HER-2 receptor status. Downstream targets of MDA-7 were assessed by reverse phase protein array analysis, western blot analysis and immunofluorescence confocal microscopy. Our results show that MDA-7-induced apoptosis was mediated by caspases in all cell lines tested. However, MDA-7 modulates additional pathways in SKBr3 (HER-2 positive) and MCF-7 (ER positive) cells including downregulation of AKT-GSK3β and upregulation of cyclin-dependent kinase inhibitors in the nucleus. This leads to cell cycle arrest in addition to apoptosis. In conclusion, MDA-7 abrogates tumor-promoting pathways including the activation of caspase-dependent signaling pathways ultimately leading to apoptosis. In addition, depending on the phenotype of the breast cancer cell, MDA-7 modulates cell cycle regulating pathways to mediate cell cycle arrest.

Collaboration


Dive into the Yanna Liu's collaboration.

Top Co-Authors

Avatar

Kelly K. Hunt

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Stephen G. Swisher

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sunil Chada

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Khandan Keyomarsi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dora Bocangel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tamra McKenzie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rajagopal Ramesh

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abujiang Pataer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hannah Wingate

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge