Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yannan Jin is active.

Publication


Featured researches published by Yannan Jin.


IEEE Access | 2016

Metal Artifact Reduction in CT: Where Are We After Four Decades?

Lars Gjesteby; Bruno De Man; Yannan Jin; Harald Paganetti; Joost M Verburg; D Giantsoudi; Ge Wang

Methods to overcome metal artifacts in computed tomography (CT) images have been researched and developed for nearly 40 years. When X-rays pass through a metal object, depending on its size and density, different physical effects will negatively affect the measurements, most notably beam hardening, scatter, noise, and the non-linear partial volume effect. These phenomena severely degrade image quality and hinder the diagnostic power and treatment outcomes in many clinical applications. In this paper, we first review the fundamental causes of metal artifacts, categorize metal object types, and present recent trends in the CT metal artifact reduction (MAR) literature. To improve image quality and recover information about underlying structures, many methods and correction algorithms have been proposed and tested. We comprehensively review and categorize these methods into six different classes of MAR: metal implant optimization, improvements to the data acquisition process, data correction based on physics models, modifications to the reconstruction algorithm (projection completion and iterative reconstruction), and image-based post-processing. The primary goals of this paper are to identify the strengths and limitations of individual MAR methods and overall classes, and establish a relationship between types of metal objects and the classes that most effectively overcome their artifacts. The main challenges for the field of MAR continue to be cases with large, dense metal implants, as well as cases with multiple metal objects in the field of view. Severe photon starvation is difficult to compensate for with only software corrections. Hence, the future of MAR seems to be headed toward a combined approach of improving the acquisition process with dual-energy CT, higher energy X-rays, or photon-counting detectors, along with advanced reconstruction approaches. Additional outlooks are addressed, including the need for a standardized evaluation system to compare MAR methods.


Physics in Medicine and Biology | 2017

Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction

D Giantsoudi; Bruno De Man; Joost M Verburg; A. Trofimov; Yannan Jin; Ge Wang; Lars Gjesteby; Harald Paganetti

A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.


Journal of X-ray Science and Technology | 2016

Cardiac CT: A system architecture study.

Paul F. FitzGerald; James Bennett; Jeffrey Carr; Peter Michael Edic; Daniel W. Entrikin; Hewei Gao; Maria Iatrou; Yannan Jin; Baodong Liu; Ge Wang; Jiao Wang; Zhye Yin; Hengyong Yu; Kai Zeng; Bruno De Man

BACKGROUND We are interested in exploring dedicated, high-performance cardiac CT systems optimized to provide the best tradeoff between system cost, image quality, and radiation dose. OBJECTIVE We sought to identify and evaluate a broad range of CT architectures that could provide an optimal, dedicated cardiac CT solution. METHODS We identified and evaluated thirty candidate architectures using consistent design choices. We defined specific evaluation metrics related to cost and performance. We then scored the candidates versus the defined metrics. Lastly, we applied a weighting system to combine scores for all metrics into a single overall score for each architecture. CT experts with backgrounds in cardiovascular radiology, x-ray physics, CT hardware and CT algorithms performed the scoring and weighting. RESULTS We found nearly a twofold difference between the most and the least promising candidate architectures. Architectures employed by contemporary commercial diagnostic CT systems were among the highest-scoring candidates. We identified six architectures that show sufficient promise to merit further in-depth analysis and comparison. CONCLUSION Our results suggest that contemporary diagnostic CT system architectures outperform most other candidates that we evaluated, but the results for a few alternatives were relatively close. We selected six representative high-scoring candidates for more detailed design and further comparative evaluation.


IEEE Access | 2016

High-kVp Assisted Metal Artifact Reduction for X-Ray Computed Tomography

Yan Xi; Yannan Jin; Bruno De Man; Ge Wang

In X-ray computed tomography (CT), the presence of metallic parts in patients causes serious artifacts and degrades image quality. Many algorithms were published for metal artifact reduction (MAR) over the past decades with various degrees of success but without a perfect solution. Some MAR algorithms are based on the assumption that metal artifacts are due only to strong beam hardening and may fail in the case of serious photon starvation. Iterative methods handle photon starvation by discarding or underweighting corrupted data, but the results are not always stable and they come with high computational cost. In this paper, we propose a high-kVp-assisted CT scan mode combining a standard CT scan with a few projection views at a high-kVp value to obtain critical projection information near the metal parts. This method only requires minor hardware modifications on a modern CT scanner. Two MAR algorithms are proposed: dual-energy normalized MAR (DNMAR) and high-energy embedded MAR (HEMAR), aiming at situations without and with photon starvation respectively. Simulation results obtained with the CT simulator CatSim demonstrate that the proposed DNMAR and HEMAR methods can eliminate metal artifacts effectively.


Proceedings of SPIE | 2015

Patient specific tube current modulation for CT dose reduction

Yannan Jin; Zhye Yin; Yangyang Yao; Hui Wang; Mingye Wu; Mannudeep K. Kalra; Bruno De Man

Radiation exposure during CT imaging has drawn growing concern from academia, industry as well as the general public. Sinusoidal tube current modulation has been available in most commercial products and used routinely in clinical practice. To further exploit the potential of tube current modulation, Sperl et al. proposed a Computer-Assisted Scan Protocol and Reconstruction (CASPAR) scheme [6] that modulates the tube current based on the clinical applications and patient specific information. The purpose of this study is to accelerate the CASPAR scheme to make it more practical for clinical use and investigate its dose benefit for different clinical applications. The Monte Carlo simulation in the original CASPAR scheme was substituted by the dose reconstruction to accelerate the optimization process. To demonstrate the dose benefit, we used the CATSIM package generate the projection data and perform standard FDK reconstruction. The NCAT phantom at thorax position was used in the simulation. We chose three clinical cases (routine chest scan, coronary CT angiography with and without breast avoidance) and compared the dose level with different mA modulation schemes (patient specific, sinusoidal and constant mA) with matched image quality. The simulation study of three clinical cases demonstrated that the patient specific mA modulation could significantly reduce the radiation dose compared to sinusoidal modulation. The dose benefits depend on the clinical application and object shape. With matched image quality, for chest scan the patient specific mA profile reduced the dose by about 15% compared to the sinusoid mA modulation; for the organ avoidance scan the dose reduction to the breast was over 50% compared to the constant mA baseline.


Medical Physics | 2017

Quest for the Ultimate Cardiac CT Scanner

Paul F. FitzGerald; Peter Michael Edic; Hewei Gao; Yannan Jin; Jiao Wang; Ge Wang; Bruno De Man

Purpose To quantitatively evaluate and compare six proposed system architectures for cardiac CT scanning. Methods Starting from the clinical requirements for cardiac CT, we defined six dedicated cardiac CT architectures. We selected these architectures based on a previous screening study and defined them in sufficient detail to comprehensively analyze their cost and performance. We developed rigorous comparative evaluation methods for the most important aspects of performance and cost, and we applied these evaluation criteria to the defined cardiac CT architectures. Results We found that CT system architectures based on the third‐generation geometry provide nearly linear performance improvement versus the increased cost of additional beam lines (i.e., source–detector pairs), although similar performance improvement could be achieved with advanced motion‐correction algorithms. The third‐generation architectures outperform even the most promising of the proposed architectures that deviate substantially from the traditional CT system architectures. Conclusion This work confirms the validity of the current trend in commercial CT scanner design. However, we anticipate that over time, CT hardware and software technologies will evolve, the relative importance of the performance criteria will change, the relative costs of components will vary, some of the remaining challenges will be addressed, and perhaps new candidate architectures will be identified; therefore, the conclusion of a comparative analysis like this may change. The evaluation methods that we used can provide a framework for other researchers to analyze their own proposed CT architectures.


Developments in X-Ray Tomography XI | 2017

Deep learning methods for CT image-domain metal artifact reduction

Lars Gjesteby; Qingsong Yang; Yan Xi; Bernhard Erich Hermann Claus; Yannan Jin; Bruno De Man; Ge Wang; Hongming Shan

Artifacts resulting from metal objects have been a persistent problem in CT images over the last four decades. A common approach to overcome their effects is to replace corrupt projection data with values synthesized from an interpolation scheme or by reprojection of a prior image. State-of-the-art correction methods, such as the interpolation- and normalization-based algorithm NMAR, often do not produce clinically satisfactory results. Residual image artifacts remain in challenging cases and even new artifacts can be introduced by the interpolation scheme. Metal artifacts continue to be a major impediment, particularly in radiation and proton therapy planning as well as orthopedic imaging. A new solution to the long-standing metal artifact reduction (MAR) problem is deep learning, which has been successfully applied to medical image processing and analysis tasks. In this study, we combine a convolutional neural network (CNN) with the state-of-the-art NMAR algorithm to reduce metal streaks in critical image regions. Training data was synthesized from CT simulation scans of a phantom derived from real patient images. The CNN is able to map metal-corrupted images to artifact-free monoenergetic images to achieve additional correction on top of NMAR for improved image quality. Our results indicate that deep learning is a novel tool to address CT reconstruction challenges, and may enable more accurate tumor volume estimation for radiation therapy planning.


Proceedings of SPIE | 2016

CT dose minimization using personalized protocol optimization and aggressive bowtie

Hui Wang; Zhye Yin; Yannan Jin; Mingye Wu; Yangyang Yao; Kun Tao; Mannudeep K. Kalra; Bruno De Man

In this study, we propose to use patient-specific x-ray fluence control to reduce the radiation dose to sensitive organs while still achieving the desired image quality (IQ) in the region of interest (ROI). The mA modulation profile is optimized view by view, based on the sensitive organs and the ROI, which are obtained from an ultra-low-dose volumetric CT scout scan [1]. We use a clinical chest CT scan to demonstrate the feasibility of the proposed concept: the breast region is selected as the sensitive organ region while the cardiac region is selected as IQ ROI. Two groups of simulations are performed based on the clinical CT dataset: (1) a constant mA scan adjusted based on the patient attenuation (120 kVp, 300 mA), which serves as baseline; (2) an optimized scan with aggressive bowtie and ROI centering combined with patient-specific mA modulation. The results shows that the combination of the aggressive bowtie and the optimized mA modulation can result in 40% dose reduction in the breast region, while the IQ in the cardiac region is maintained. More generally, this paper demonstrates the general concept of using a 3D scout scan for optimal scan planning.


Medical Physics | 2016

MO-FG-CAMPUS-IeP2-05: Feasibility Demonstration of High-Voltage Clinical CT and Impact On X-Ray Penetration Through Metal Objects

Yannan Jin; V Robinson; Lars Gjesteby; Ge Wang; J Verburg; D Giantsoudi; Harald Paganetti; B De Man

PURPOSE To demonstrate the possibility and quantify the impact of operating a clinical CT scanner at exceptionally high x-ray tube voltage for better penetration through metal objects and facilitating metal artifact reduction. METHODS We categorize metal objects according to the data corruption severeness (level of distortion and complete photon starvation fraction). To demonstrate feasibility and investigate the impact of high voltage scanning we modified a commercial GE LightSpeed VCT scanner (generator and software) to enable CT scans with x-ray tube voltages as high as 175 kVp. A 20 cm diameter water phantom with two metal rods (10 mm stainless and 25 mm titanium) and a water phantom with realistic metal object (spine cage) were used to evaluate the data corruption and image artifacts in the absence of any algorithm correction. We also performed simulations to confirm our understanding of the transmitted photon levels through metal objects with different size and composition. RESULTS The reconstructed images at 175 kVp still have significant dark shading artifacts, as expected since no special scatter correction or beam hardening was performed but show substantially lower noise and photon starvation than at lower kVp due to better beam penetration. Analysis of the raw data shows that the photon starved data is reduced from over 4% at 140 kVp to below 0.2% at 175 kVp. The simulations indicate that for clinically relevant titanium and stainless objects a 175 kVp tube voltage effectively avoids photon starvation. CONCLUSION The use of exceptionally high tube voltage on a clinical CT system is a practical and effective solution to avoid photon starvation caused by certain metal implants. Sparse and hybrid high-voltage protocols are being considered to maintain low patient dose. This opens the door to algorithmic physics-based corrections rather than treating the data as missing and relying on missing data algorithms. Some of the authors are employees of General Electric.


international symposium on biomedical imaging | 2014

Implementation and validation of the advanced variance estimation technique using CT projection data.

Yangyang Yao; Yannan Jin; Paul F. FitzGerald; Pete Edic; Zhye Yin; Bruno De Man

In this paper, an improved method of constructing FBP2D (3D) based variance map is introduced and implemented successfully. Accordingly, a quadratic version of distance driven back-projector (DD) compatible with variance reconstruction is developed to exploit fully the features of DD. As a result, the calculated variance is validated and shows an excellent match with ground truth.

Collaboration


Dive into the Yannan Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ge Wang

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Gjesteby

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge