Yannic Waerzeggers
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yannic Waerzeggers.
PLOS ONE | 2008
Roland T. Ullrich; Thomas Zander; Bernd Neumaier; Mirjam Koker; Takeshi Shimamura; Yannic Waerzeggers; Christa L. Borgman; Samir Tawadros; Hongfeng Li; Martin L. Sos; Heiko Backes; Geoffrey I. Shapiro; Jürgen Wolf; Andreas H. Jacobs; Roman K. Thomas; Alexandra Winkeler
Background Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking. Methodology/Principal Findings We performed a systematic comparison of 3′-Deoxy-3′-[18F]-fluoro-L-thymidine ([18F]FLT) and 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F]FLT uptake after only two days of treatment, [18F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F]FLT PET but not [18F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR. Conclusions [18F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC.
Methods | 2009
Yannic Waerzeggers; Parisa Monfared; Thomas Viel; Alexandra Winkeler; Jürgen Voges; Andreas H. Jacobs
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Biochimica et Biophysica Acta | 2010
Yannic Waerzeggers; Parisa Monfared; Thomas Viel; Alexandra Winkeler; Andreas H. Jacobs
Neuroimaging techniques represent powerful tools to assess disease-specific cellular, biochemical and molecular processes non-invasively in vivo. Besides providing precise anatomical localisation and quantification, the most exciting advantage of non-invasive imaging techniques is the opportunity to investigate the spatial and temporal dynamics of disease-specific functional and molecular events longitudinally in intact living organisms, so called molecular imaging (MI). Combining neuroimaging technologies with in vivo models of neurological disorders provides unique opportunities to understand the aetiology and pathophysiology of human neurological disorders. In this way, neuroimaging in mouse models of neurological disorders not only can be used for phenotyping specific diseases and monitoring disease progression but also plays an essential role in the development and evaluation of disease-specific treatment approaches. In this way MI is a key technology in translational research, helping to design improved disease models as well as experimental treatment protocols that may afterwards be implemented into clinical routine. The most widely used imaging modalities in animal models to assess in vivo anatomical, functional and molecular events are positron emission tomography (PET), magnetic resonance imaging (MRI) and optical imaging (OI). Here, we review the application of neuroimaging in mouse models of neurodegeneration (Parkinsons disease, PD, and Alzheimers disease, AD) and brain cancer (glioma).
The Journal of Neuroscience | 2005
Masao Umegaki; Yasuhiro Sanada; Yannic Waerzeggers; Gerhard Rosner; Toshiki Yoshimine; Wolf-Dieter Heiss; Rudolf Graf
Spreading depression-like peri-infarct depolarizations not only characterize but also worsen penumbra conditions in cortical border zones of experimental focal ischemia. We intended to investigate the relevance of ischemic depolarization in subcortical regions of ischemic territories. Calomel electrodes measured DC potentials simultaneously in the lateral and medial portions of the caudate nucleus (CN) of 11 anesthetized cats after permanent occlusion of the middle cerebral artery. Additionally, platinum electrodes measured cerebral blood flow (CBF) in the CN, and laser Doppler probes CBF in the cortex. Depolarizations (negative DC shifts >10 mV) were obtained in 10 of 11 cats. Further differentiation revealed that short-lasting spreading depression-like depolarizations (SDs; 5 of 10 cats: 5.24 ± 1.22 min total duration; 23.3 ± 4.2 mV amplitude) were predominantly found in medial and longer depolarizations (LDs; 4 of 10 cats: 64.7 ± 47.5 min; 25.0 ± 11.3 mV) in the lateral CN. Terminal depolarizations (TDs; 6 of 10 cats; without repolarization) occurred immediately after occlusion or at later stages, being then accompanied by elevations of intracranial pressure presumably inducing secondary CBF reduction. CBF tended to be lower in regions with TDs (33.3 ± 29.9% of control) and LDs (37.3 ± 22.8%) than in regions with SDs (51.5 ± 48.0%). We conclude that in focal ischemia, transient peri-infarct depolarizations emerge not only in cortical but also in striatal gray matter, thereby demonstrating the existence of subcortical zones of ischemic penumbra. The generation of these ischemic depolarizations is a multifocal process possibly linked to brain swelling and intracranial pressure rise in the later course of focal ischemia, and therefore a relevant correlate of progressively worsening conditions.
The Journal of Nuclear Medicine | 2012
Thomas Viel; Krishna M. Talasila; Parisa Monfared; Jian Wang; Jan F. Jikeli; Yannic Waerzeggers; Bernd Neumaier; Heiko Backes; Narve Brekkå; Frits Thorsen; Daniel Stieber; Simone P. Niclou; Alexandra Winkeler; Bertrand Tavitian; Mathias Hoehn; Rolf Bjerkvig; Hrvoje Miletic; Andreas H. Jacobs
The hypothesis of this study was that distinct experimental glioblastoma phenotypes resembling human disease can be noninvasively distinguished at various disease stages by imaging in vivo. Methods: Cultured spheroids from 2 human glioblastomas were implanted into the brains of nude rats. Glioblastoma growth dynamics were followed by PET using 18F-FDG, 11C-methyl-l-methionine (11C-MET), and 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) and by MRI at 3–6 wk after implantation. For image validation, parameters were coregistered with immunohistochemical analysis. Results: Two tumor phenotypes (angiogenic and infiltrative) were obtained. The angiogenic phenotype showed high uptake of 11C-MET and 18F-FLT and relatively low uptake of 18F-FDG. 11C-MET was an early indicator of vessel remodeling and tumor proliferation. 18F-FLT uptake correlated to positive Ki67 staining at 6 wk. T1- and T2-weighted MR images displayed clear tumor delineation with strong gadolinium enhancement at 6 wk. The infiltrative phenotype did not accumulate 11C-MET and 18F-FLT and impaired the 18F-FDG uptake. In contrast, the Ki67 index showed a high proliferation rate. The extent of the infiltrative tumors could be observed by MRI but with low contrast. Conclusion: For angiogenic glioblastomas, noninvasive assessment of tumor activity corresponds well to immunohistochemical markers, and 11C-MET was more sensitive than 18F-FLT at detecting early tumor development. In contrast, infiltrative glioblastoma growth in the absence of blood–brain barrier breakdown is difficult to noninvasively follow by existing imaging techniques, and a negative 18F-FLT PET result does not exclude the presence of proliferating glioma tissue. The angiogenic model may serve as an advanced system to study imaging-guided antiangiogenic and antiproliferative therapies.
PLOS ONE | 2007
Alexandra Winkeler; Miguel Sena-Esteves; Leonie E.M. Paulis; Hongfeng Li; Yannic Waerzeggers; Benedikt Rückriem; Uwe Himmelreich; Markus Klein; Parisa Monfared; Maria Adele Rueger; Michael T. Heneka; Stefan Vollmar; Mathias Hoehn; Cornel Fraefel; Rudolf Graf; Klaus Wienhard; Wolf–Dieter Heiss; Andreas H. Jacobs
Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.
Cancer Research | 2008
Parisa Monfared; Alexandra Winkeler; Markus Klein; Hong Feng Li; Anke Klose; Marianna Hoesel; Yannic Waerzeggers; Sigrun I. Korsching; Andreas H. Jacobs
Targeted therapies directed against individual cancer-specific molecular alterations offer the development of disease-specific and individualized treatment strategies. Activation of the transcription factor E2F-1 via alteration of the p16-cyclinD-Rb pathway is one of the key molecular events in the development of gliomas. E2F-1 binds to and activates the E2F-1 promoter in an autoregulatory manner. The human E2F-1 promoter has been shown to be selectively activated in tumor cells with a defect in the pRb pathway. Paradoxically, E2F-1 also carries tumor suppressor function. Our investigations focused on analyzing the dynamics of the activity of the E2F-1 responsive element under basal conditions and certain stimuli such as chemotherapy using molecular imaging technology. We constructed a retrovirus bearing the Cis-E2F-TA-LITG reporter system to noninvasively assess E2F-1-dependent transcriptional regulation in culture and in vivo. We show that our reporter system is sensitive to monitor various changes in cellular E2F-1 levels and its transcriptional control of our reporter system to follow the state of the Rb/E2F pathway and the DNA damage-induced up-regulation of E2F-1 activity in vivo. Exposure to 1,3-bis(2-chloroethyl)-1-nitrosourea leads to increased E2F-1 expression levels in a dose- and time-dependent manner, which can be quantified by imaging in vivo, leading to an alteration of cell cycle progression and caspase 3/7 activity. In summary, noninvasive imaging of E2F-1 as a common downstream regulator of cell cycle progression using the Cis-E2F-TA-LUC-IRES-TKGFP reporter system is highly attractive for evaluating the kinetics of cell cycle regulation and the effects of novel cell cycle targeting anticancer agents in vivo.
Cancer Biomarkers | 2011
Yannic Waerzeggers; Kambiz Rahbar; Burkhard Riemann; Matthias Weckesser; Michael Schäfers; Volker Hesselmann; Thomas Niederstadt; Normann Willich; Walter Stummer; Werner Paulus; Otmar Schober; Andreas H. Jacobs
Systemic cancer is the second most common cause of death in developed countries and metastatic brain tumour the most common tumour of the central nervous system (CNS). As the incidence of brain metastases appears to be rising, more accurate non-invasive imaging modalities for diagnosis, prognosis, prediction and follow-up of treatment are requisites for efficient patient management. Positron emission tomography (PET) imaging has the ability to evaluate different aspects of tumour microenvironment on the molecular and cellular level and impact the workup of patients with brain metastasis. This article reviews the current application of PET imaging in patients with metastatic brain disease.
British Journal of Radiology | 2011
Yannic Waerzeggers; Roland T. Ullrich; Parisa Monfared; Thomas Viel; Matthias Weckesser; Walter Stummer; Ottmar Schober; Alexandra Winkeler; Andreas H. Jacobs
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. In particular, the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. This first part of the review focuses on imaging biomarkers of general biochemical and physiological processes related to tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. These imaging biomarkers are an integral part of current clinical practice in the management of primary brain tumours. The second article of the review discusses the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways. Current applications of these biomarkers are mostly confined to experimental small animal research to develop and validate these novel imaging strategies with future extrapolation in the clinical setting as the primary objective.
British Journal of Radiology | 2011
Yannic Waerzeggers; Parisa Monfared; Thomas Viel; Andreas Faust; Klaus Kopka; Michael Schäfers; Bertrand Tavitian; Alexandra Winkeler; Andreas H. Jacobs
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. Especially the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. In our other review we focused on imaging biomarkers of general biochemical and physiological processes related with tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. In this part of the review, we will discuss the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways and their application in targeted therapies.