Yannick Fagot-Revurat
Nancy-Université
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yannick Fagot-Revurat.
Chemical Science | 2013
Luis Cardenas; Rico Gutzler; Josh Lipton-Duffin; Chaoying Fu; Jaclyn L. Brusso; Laurentiu E. Dinca; Martin Vondráček; Yannick Fagot-Revurat; Daniel Malterre; Federico Rosei; Dmitrii F. Perepichka
We report the synthesis and first electronic characterization of an atomically thin two dimensional π-conjugated polymer. Polymerization via Ullmann coupling of a tetrabrominated tetrathienoanthracene on Ag(111) in ultra-high vacuum (UHV) produces a porous 2D polymer network that has been characterized by scanning tunnelling microscopy (STM). High-resolution X-ray photoelectron spectroscopy (HRXPS) shows that the reaction proceeds via two distinct steps: dehalogenation of the brominated precursor, which begins at room temperature (RT), and C–C coupling of the resulting Ag-bound intermediates, which requires annealing at 300 °C. The formation of the 2D conjugated network is accompanied by a shift of the occupied molecular states by 0.6 eV towards the Fermi level, as observed by UV photoelectron spectroscopy (UPS). A theoretical analysis of the electronic gap reduction in the transition from monomeric building blocks to various 1D and 2D oligomers and polymers yields important insight into the effect of topology on the electronic structure of 2D conjugated polymers.
New Journal of Physics | 2007
Daniel Malterre; Bertrand Kierren; Yannick Fagot-Revurat; Stéphane Pons; A. Tejeda; C. Didiot; H. Cercellier; A Bendounan
Due to their extreme surface sensitivity, the Shockley states of (111) noble metal surfaces can be used to study the modifications of atomic and electronic properties of epitaxial ultra thin films and self-organized nanostructures. In metallic interfaces, the different parameters of the Shockley surface state bands (energy, effective mass and eventually spin?orbit splitting) have been shown to be strongly thickness dependent. It was also possible by scanning tunneling spectroscopy to evidence a spectroscopic signature of buried interfaces. Moreover, superperiodic surface structures like the reconstruction on Au(111) vicinal surfaces or self-organized nanodots, lead to spectacular spectroscopic effects. In the vicinal Au(23?23?21) surface, the opening of tiny energy gaps associated with the reconstruction potential of such surfaces has been evidenced. Peculiar growth on these Au vicinal surfaces allows us to obtain high quality self-assembled metallic nanostructures which exhibit homogeneous electronic properties on a large spatial scale resulting from a coherent scattering of the Shockley states.
Journal of the American Chemical Society | 2016
Marco Di Giovannantonio; Massimo Tomellini; Josh Lipton-Duffin; Gianluca Galeotti; Maryam Ebrahimi; Albano Cossaro; Alberto Verdini; Neerav Kharche; Vincent Meunier; Guillaume Vasseur; Yannick Fagot-Revurat; Dmitrii F. Perepichka; Federico Rosei; G. Contini
Surface-confined polymerization via Ullmann coupling is a promising route to create one- and two-dimensional covalent π-conjugated structures, including the bottom-up growth of graphene nanoribbons. Understanding the mechanism of the Ullmann reaction is necessary to provide a platform for rationally controlling the formation of these materials. We use fast X-ray photoelectron spectroscopy (XPS) in kinetic measurements of epitaxial surface polymerization of 1,4-dibromobenzene on Cu(110) and devise a kinetic model based on mean field rate equations, involving a transient state. This state is observed in the energy landscapes calculated by nudged elastic band (NEB) within density functional theory (DFT), which assumes as initial and final geometries of the organometallic and polymeric structures those observed by scanning tunneling microscopy (STM). The kinetic model accounts for all the salient features observed in the experimental curves extracted from the fast-XPS measurements and enables an enhanced understanding of the polymerization process, which is found to follow a nucleation-and-growth behavior preceded by the formation of a transient state.
Physical Review B | 2014
C. Tournier-Colletta; G. Autès; Bertrand Kierren; Ph. Bugnon; H. Berger; Yannick Fagot-Revurat; Oleg V. Yazyev; M. Grioni; Daniel Malterre
The non-centro-symmetric semiconductor BiTeI exhibits two distinct surface terminations that support spin-split Rashba surface states. Their ambipolarity can be exploited for creating spin-polarized p-n junctions at the boundaries between domains with different surface terminations. We use scanning tunneling microscopy (STM) and spectroscopy (STS) to locate such junctions and investigate their atomic and electronic properties. The Te- and I-terminated surfaces are identified owing to their distinct chemical reactivity and an apparent height mismatch of electronic origin. The Rashba surface states are revealed in the STS spectra by the onset of a van Hove singularity at the band edge. Eventually, an electronic depletion is found on interfacial Te atoms, consistent with the formation of a space-charge area in typical p-n junctions.
Applied Physics Letters | 2014
Muriel Sicot; Yannick Fagot-Revurat; Bertrand Kierren; Guillaume Vasseur; Daniel Malterre
We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these res...
New Journal of Physics | 2011
Daniel Malterre; Bertrand Kierren; Yannick Fagot-Revurat; C. Didiot; F. J. García de Abajo; F. Schiller; J Cordón; J. E. Ortega; Manuel Lardizabal
The inhibition in wave propagation at band gap energies plays a central role in many areas of technology such as electronics (electron gaps), nanophotonics (light gaps) and phononics (acoustic gaps), among others. Here we demonstrate that metal surfaces featuring free-electron- like bands may become semiconducting by periodic nanostructuration. We combine scanning tunneling spectroscopy and angle-resolved photoemisssion to accurately determine the energy-dependent local density of states and band structure of the Ag/Cu(111) noble metal interface patterned with an array of triangular dislocations, demonstrating the existence of a 25meV band gap that extends over the entire surface Brillouin zone. We prove that this gap is a general consequence of symmetry reduction in close-packed metallic overlayers; in particular, we show that the gap opening is due to the symmetry lowering of the wave vector group at the K point from C3v to C3.
Physical Review Letters | 2017
A. Chainani; Muriel Sicot; Yannick Fagot-Revurat; G. Vasseur; J. Granet; Bertrand Kierren; L. Moreau; M. Oura; A. Yamamoto; Y. Tokura; Daniel Malterre
We study the electronic structure of HgBa_{2}Ca_{2}Cu_{3}O_{8+δ} (Hg1223; T_{c}=134 K) using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). Resonant valence band PES across the O K edge and Cu L edge identifies correlation satellites originating in O 2p and Cu 3d two-hole final states, respectively. Analyses using the experimental O 2p and Cu 3d partial density of states show quantitatively different on-site Coulomb energy for the Cu site (U_{dd}=6.5±0.5 eV) and O site (U_{pp}=1.0±0.5 eV). Cu_{2}O_{7}-cluster calculations with nonlocal screening explain the Cu 2p core level PES and Cu L-edge XAS spectra, confirm the U_{dd} and U_{pp} values, and provide evidence for the Zhang-Rice singlet state in Hg1223. In contrast to other hole-doped cuprates and 3d-transition metal oxides, the present results indicate weakly correlated oxygen holes in Hg1223.
Symmetry | 2013
Guillaume Vasseur; Yannick Fagot-Revurat; Bertrand Kierren; Muriel Sicot; Daniel Malterre
Some characteristic features of band structures, like the band degeneracy at high symmetry points or the existence of energy gaps, usually reflect the symmetry of the crystal or, more precisely, the symmetry of the wave vector group at the relevant points of the Brillouin zone. In this paper, we will illustrate this property by considering two-dimensional (2D)-hexagonal lattices characterized by a possible two-fold degenerate band at the K points with a linear dispersion (Dirac points). By combining scanning tunneling spectroscopy and angle-resolved photoemission, we study the electronic properties of a similar system: the Ag/Cu(111) interface reconstruction characterized by a hexagonal superlattice, and we show that the gap opening at the K points of the Brillouin zone of the reconstructed cell is due to the symmetry breaking of the wave vector group.
Nature Nanotechnology | 2007
C. Didiot; Stéphane Pons; Bertrand Kierren; Yannick Fagot-Revurat; Daniel Malterre
Physical Review B | 2005
D. Popović; F. Reinert; S. Hüfner; V. G. Grigoryan; M. Springborg; H. Cercellier; Yannick Fagot-Revurat; B. Kierren; D. Malterre