Yannick Labreuche
IFREMER
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yannick Labreuche.
Microbial Ecology | 2007
Matthieu Garnier; Yannick Labreuche; Celine Garcia; Maeva Robert; Jean-Louis Nicolas
A study was conducted to investigate the involvement of bacteria in oyster mortalities during summer. Moribund and apparently healthy oysters were sampled during mortality events along the French coast and in rearing facilities, usually when temperature reached 19°C or higher, and oysters were in the gonadal maturation phase. Hemolymph samples were aseptically withdrawn and submitted to bacteriological analysis. In healthy oysters, bacteria colonized hemolymph at low concentrations depending on the location. In most moribund oysters, bacteria were present in hemolymph and other tissues. These bacterial populations were more often diverse in oysters originating from the open sea than from facilities where animals were generally infected by a single type of bacterium. Only the dominant colonies were identified by phenotypic and genotypic characters (RFLP of GyrB gene and partial sequence of 16S rRNA gene). They belonged to a limited number of species including Vibrio aestuarianus, members of the V. splendidus group, V. natriegens, V. parahaemolyticus, and Pseudoalteromonas sp. The most frequently encountered species was V. aestuarianus (56% of isolates), which was composed of several strains closely related by their 16S rRNA gene but diverse by their phenotypic characters. They appeared intimately linked to oysters. The species within the V. splendidus group were less prevalent (25% of isolates) and more taxonomically dispersed. A majority of the dominant strains of V. aestuarianus and V. splendidus group injected to oysters induced mortality, whereas others belonging to the same species, particularly those found in mixture, appeared innocuous.
Fish & Shellfish Immunology | 2010
Yannick Labreuche; Frédérique Le Roux; Joël Henry; Céline Zatylny; Arnaud Huvet; Christophe Lambert; Philippe Soudant; Didier Mazel; Jean-Louis Nicolas
Extracellular products (ECPs) of the pathogenic Vibrio aestuarianus 01/32 were previously reported to display lethality in Crassostrea gigas oysters and to cause morphological changes and immunosuppression in oyster hemocytes. To identify the source of this toxicity, biochemical and genetic approaches were developed. ECP protease activity and lethality were shown to be significantly reduced following incubation with metal chelators, suggesting the involvement of a zinc metalloprotease. An open reading frame of 1836 bp encoding a 611-aa metalloprotease (designated Vam) was identified. The deduced protein sequence showed high homology to other Vibrio metalloproteases reported to be involved in pathogenicity. To further confirm the role of this enzyme in ECP toxicity, a plasmid carrying the vam gene under the control of an araC-P(BAD) expression cassette was transferred to a Vibrio splendidus related strain, LMG20012(T), previously characterized as non-pathogenic to oysters. Expression of Vam conferred a toxic phenotype to LMG20012(T) ECPs in vivo and cytotoxicity to oyster hemocytes in vitro. Collectively, these data suggest that the Vam metalloprotease is a major contributor to the toxicity induced by V. aestuarianus ECPs and is involved in the impairment of oyster hemocyte functions.
Systematic and Applied Microbiology | 2008
Matthieu Garnier; Yannick Labreuche; Jean-Louis Nicolas
Eleven Vibrio isolates invading the hemolymph of live and moribund oysters (Crassostrea gigas) collected in the field and from a hatchery in France, were characterized by a polyphasic approach. Phylogenetic analysis of 16S rRNA, gyrB and toxR genes indicated high homogeneity between these strains and the Vibrio aestuarianus type strain (ATCC35048(T)), and confirmed previous 16S rRNA analysis. In contrast, DNA:DNA hybridization was from 61% to 100%, while phenotypic characters and virulence tests showed a large diversity between the strains. Nevertheless, several common characters allowed the isolates to be distinguished from the reference strain. On the basis of several distinct phenotypic characteristics, it is proposed to establish two subspecies within the V. aestuarianus spp. group, V. aestuarianus subsp. aestuarianus [D. Tison, R. Seidler, Vibrio aestuarianus: a new species from estuarine waters and shellfish, Int. J. Syst. Bacteriol. (1983) 699-702] and V. aestuarianus subsp. francensis for these French isolates. The characters that differentiate the new strains from V. aestuarianus subsp. aestuarianus(T) are virulence (positive for 63% of the isolates) and 12:0 fatty acid content. The colonies were smaller and uncoloured, whereas no growth occurred at 35 degrees C or on TCBS, and the strains did not utilize several substrates, including L-serine, alpha-cyclodextrin, D-mannitol, alpha-glycyl-L-aspartic acid, L-threonine and glucose-1-phosphate.
The ISME Journal | 2015
Astrid Lemire; David Goudenège; Typhaine Versigny; Bruno Petton; Alexandra Calteau; Yannick Labreuche; Frédérique Le Roux
Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality.
Environmental Microbiology | 2011
Frédérique Le Roux; Yannick Labreuche; Brigid M. Davis; Naeem Iqbal; Sophie Mangenot; Cyrille Goarant; Didier Mazel; Matthew K. Waldor
Summary Vibrioses are the predominant bacterial infections in marine shrimp farms. Vibrio nigripulchritudo is an emerging pathogen of the cultured shrimp Litopenaeus stylirostris in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have revealed that recent pathogenic V. nigripulchritudo isolates from New Caledonia all cluster into a monophyletic clade and contain a small plasmid, pB1067. Here, we report that a large plasmid, pA1066 (247 kb), can also serve as a marker for virulent V. nigripulchritudo, and that an ancestral version of this plasmid was likely acquired prior to other virulence-linked markers. Additionally, we demonstrate that pA1066 is critical for the full virulence of V. nigripulchritudo in several newly developed experimental models of infection. Plasmid pB1067 also contributes to virulence; only strains containing both plasmids induced the highest level of shrimp mortality. Thus, it appears that these plasmids, which are absent from non-pathogenic isolates, may be driving forces, as well as markers, for the emergence of a pathogenic lineage of V. nigripulchritudo.
Environmental Microbiology | 2015
David Goudenège; Marie Agnès Travers; Astrid Lemire; Bruno Petton; Yannick Labreuche; Delphine Tourbiez; Sophie Mangenot; Alexandra Calteau; Didier Mazel; Jean-Louis Nicolas; Annick Jacq; Frédérique Le Roux
Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity.
Fish & Shellfish Immunology | 2013
Yannick Labreuche; Gregory W. Warr
Over the last decade, RNA interference pathways have emerged in eukaryotes as critical regulators of many diverse biological functions including, among others, transcriptional gene regulation, post-transcriptional gene silencing, heterochromatin remodelling, suppression of transposon activity, and antiviral defences. Although this gene silencing process has been reported to be relatively well conserved in species of different phyla, there are important discrepancies between plants, invertebrates and mammals. In penaeid shrimp, the existence of an intact and functional RNAi machinery is supported by a rapidly growing body of evidence. However, the extent to which this process participates to the host immune responses remains poorly defined in this non-model organism. This review summarizes our current knowledge of RNAi mechanisms in shrimp and focuses on their implication in antiviral activities and shrimp immune defences.
The ISME Journal | 2013
David Goudenège; Yannick Labreuche; Evelyne Krin; Dominique Ansquer; Sophie Mangenot; Alexandra Calteau; Claudine Médigue; Didier Mazel; Martin F. Polz; Frédérique Le Roux
Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin’, is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo.
The ISME Journal | 2017
Maxime Bruto; Adèle James; Bruno Petton; Yannick Labreuche; Sabine Chenivesse; Marianne Alunno-Bruscia; Martin F. Polz; Frédérique Le Roux
Vibrios are frequently associated with oyster mortality; however whether they are the primary causative agent or secondary opportunistic colonizers is not well understood. Here we combine analysis of natural infection dynamics, population genomics and molecular genetics to ask (i) to what extent oysters are passively colonized by Vibrio population present in the surrounding water, (ii) how populations turn over during pathogenicity events and (iii) what genetic factors are responsible for pathogenicity. We identified several populations of Vibrio preferentially associated with oyster tissues. Among these, Vibrio crassostreae is particularly abundant in diseased animals while nearly absent in the surrounding water, and its pathogenicity is correlated with the presence of a large mobilizable plasmid. We further demonstrate that the plasmid is essential for killing but not necessary for survival in tissues of oysters. Our results suggest that V. crassostreae first differentiated into a benign oyster colonizer that was secondarily turned into a pathogen by introgression of a virulence plasmid into the population, possibly facilitated by elevated host density in farming areas.
Microbes and Infection | 2006
Yannick Labreuche; Christophe Lambert; Philippe Soudant; Viviane Boulo; Arnaud Huvet; Jean-Louis Nicolas