Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yannick Lara is active.

Publication


Featured researches published by Yannick Lara.


Microbial Cell Factories | 2009

Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens.

Anthony Arguelles-Arias; Marc Ongena; Badre Halimi; Yannick Lara; Alain Brans; Bernard Joris; Patrick Fickers

BackgroundPhytopathogenic fungi affecting crop and post-harvested vegetables are a major threat to food production and food storage. To face these drawbacks, producers have become increasingly dependent on agrochemicals. However, intensive use of these compounds has led to the emergence of pathogen resistance and severe negative environmental impacts. There are also a number of plant diseases for which chemical solutions are ineffective or non-existent as well as an increasing demand by consumers for pesticide-free food. Thus, biological control through the use of natural antagonistic microorganisms has emerged as a promising alternative to chemical pesticides for more rational and safe crop management.ResultsThe genome of the plant-associated B. amyloliquefaciens GA1 was sample sequenced. Several gene clusters involved in the synthesis of biocontrol agents were detected. Four gene clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A and fengycin as well as the iron-siderophore bacillibactin. Beside these non-ribosomaly synthetised peptides, three additional gene clusters directing the synthesis of the antibacterial polyketides macrolactin, bacillaene and difficidin were identified. Mass spectrometry analysis of culture supernatants led to the identification of these secondary metabolites, hence demonstrating that the corresponding biosynthetic gene clusters are functional in strain GA1. In addition, genes encoding enzymes involved in synthesis and export of the dipeptide antibiotic bacilysin were highlighted. However, only its chlorinated derivative, chlorotetaine, could be detected in culture supernatants. On the contrary, genes involved in ribosome-dependent synthesis of bacteriocin and other antibiotic peptides were not detected as compared to the reference strain B. amyloliquefaciens FZB42.ConclusionThe production of all of these antibiotic compounds highlights B. amyloliquefaciens GA1 as a good candidate for the development of biocontrol agents.


Journal of Phycology | 2015

PHYLOGENETIC ANALYSIS OF CULTIVATION-RESISTANT TERRESTRIAL CYANOBACTERIA WITH MASSIVE SHEATHS (STIGONEMA SPP. AND PETALONEMA ALATUM, NOSTOCALES, CYANOBACTERIA) USING SINGLE-CELL AND FILAMENT SEQUENCING OF ENVIRONMENTAL SAMPLES

Jan Mareš; Yannick Lara; Iva Dadáková; Tomáš Hauer; Bohuslav Uher; Annick Wilmotte; Jan Kaštovský

Molecular assessment of a large portion of traditional cyanobacterial taxa has been hindered by the failure to isolate and grow them in culture. In this study, we developed an optimized protocol for single cell/filament isolation and 16S rRNA gene sequencing of terrestrial cyanobacteria with large mucilaginous sheaths, and applied it to determine the phylogenetic position of typical members of the genera Petalonema and Stigonema. A methodology based on a glass‐capillary isolation technique and a semi‐nested PCR protocol enabled reliable sequencing of the 16S rRNA gene from all samples analyzed. Ten samples covering seven species of Stigonema from Europe, North and Central America, and Hawaii, and the type species of Petalonema from Slovakia were sequenced. Contrary to some previous studies, which proposed a relationship with heteropolar nostocalean cyanobacteria, Petalonema appeared to belong to the family Scytonemataceae. Analysis of Stigonema specimens recovered a unique coherent phylogenetic cluster, substantially broadening our knowledge of the molecular diversity within this genus. Neither the uni‐ to biseriate species nor the multiseriate species formed monophyletic subclusters within the genus. Typical multiseriate species of Stigonema clustered in a phylogenetic branch derived from uni‐ to biseriate S. ocellatum Thuret ex Bornet & Flahault in our analysis, suggesting that species with more complex thalli may have evolved from the more simple ones. We propose the technique tested in this study as a promising tool for a future revision of the molecular taxonomy in cyanobacteria.


PLOS ONE | 2015

Evolution of the Northern Rockweed, Fucus distichus, in a Regime of Glacial Cycling: Implications for Benthic Algal Phylogenetics.

Haywood Dail Laughinghouse; Kirsten M. Müller; Walter H. Adey; Yannick Lara; Robert J. Young; Gabriel Johnson

Northern hemisphere rockweeds (Fucus) are thought to have evolved in the North Pacific and then spread to the North Atlantic following the opening of the Bering Strait. They have dispersed and widely speciated in the North Atlantic and its tributary seas. Fucus distichus is likely near the ancestral member of this genus, and studies have shown that there are several species/subspecies in this complex (i.e. F. evanescens and F. gardneri). We used phylogenetic and haplotype analyses to test the phylogenetic relationships and biogeography of F. distichus. Our data and subsequent analyses demonstrate that, unlike previous studies that lacked samples from an extensive geographical area of the Arctic and Subarctic, there is a distinct Arctic haplotype that is the source of subspecies in both the North Pacific and North Atlantic. Fucus distichus occupies a low tide zone habitat, and in Arctic/Subarctic regions it is adapted to the severe stress of sea ice coverage and disturbance during many months per year. We hypothesize that the very large geographic area of Arctic and Subarctic rocky shores available to this species during interglacials, supported by large Arctic/Subarctic fringe areas as well as unglaciated refugia during glacial cycles, provided a robust population and gene pool (described by the Thermogeographic Model). This gene pool dilutes that of the more fragmented and area-limited Temperate/Boreal area populations when they are brought together during glacial cycles. We suggest that similar subspecies complexes for a variety of Arctic/Subarctic shore biota should be examined further in this context, rather than arbitrarily being split up into numerous species.


Genome Announcements | 2017

Draft Genome Sequence of the Axenic Strain Phormidesmis priestleyi ULC007, a Cyanobacterium Isolated from Lake Bruehwiler (Larsemann Hills, Antarctica)

Yannick Lara; Benoit Durieu; Luc Cornet; Olivier Verlaine; Rosemarie Rippka; Igor Stelmach Pessi; Agnieszka Misztak; Bernard Joris; Emmanuelle Javaux; Denis Baurain; Annick Wilmotte

ABSTRACT Phormidesmis priestleyi ULC007 is an Antarctic freshwater cyanobacterium. Its draft genome is 5,684,389 bp long. It contains a total of 5,604 protein-encoding genes, of which 22.2% have no clear homologues in known genomes. To date, this draft genome is the first one ever determined for an axenic cyanobacterium from Antarctica.


PLOS ONE | 2018

Consensus assessment of the contamination level of publicly available cyanobacterial genomes

Luc Cornet; Loic Meunier; Mick Van Vlierberghe; Raphaël Léonard; Benoit Durieu; Yannick Lara; Agnieszka Misztak; Damien Sirjacobs; Emmanuelle Javaux; Hervé Philippe; Annick Wilmotte; Denis Baurain

Publicly available genomes are crucial for phylogenetic and metagenomic studies, in which contaminating sequences can be the cause of major problems. This issue is expected to be especially important for Cyanobacteria because axenic strains are notoriously difficult to obtain and keep in culture. Yet, despite their great scientific interest, no data are currently available concerning the quality of publicly available cyanobacterial genomes. As reliably detecting contaminants is a complex task, we designed a pipeline combining six methods in a consensus strategy to assess the contamination level of 440 genome assemblies of Cyanobacteria. Two methods are based on published reference databases of ribosomal genes (SSU rRNA 16S and ribosomal proteins), one is indirectly based on a reference database of marker genes (CheckM), and three are based on complete genome analysis. Among those genome-wide methods, Kraken and DIAMOND blastx share the same reference database that we derived from Ensembl Bacteria, whereas CONCOCT does not require any reference database, instead relying on differences in DNA tetramer frequencies. Given that all the six methods appear to have their own strengths and limitations, we used the consensus of their rankings to infer that >5% of cyanobacterial genome assemblies are highly contaminated by foreign DNA (i.e., contaminants were detected by 5 or 6 methods). Our results will help researchers to check the quality of publicly available genomic data before use in their own analyses. Moreover, we argue that journals should make mandatory the submission of raw read data along with genome assemblies in order to facilitate the detection of contaminants in sequence databases.


FEMS Microbiology Ecology | 2018

Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats

Igor Stelmach Pessi; Yannick Lara; Benoit Durieu; Pedro De Carvalho Maalouf; Elie Verleyen; Annick Wilmotte

The terrestrial Antarctic Realm has recently been divided into 16 Antarctic Conservation Biogeographic Regions (ACBRs) based on environmental properties and the distribution of biota. Despite their prominent role in the primary production and nutrient cycling in Antarctic lakes, cyanobacteria were only poorly represented in the biological dataset used to delineate these ACBRs. Here, we provide a first high-throughput sequencing insight into the spatial distribution of benthic cyanobacterial communities in Antarctic lakes located in four distinct, geographically distant ACBRs and covering a range of limnological conditions. Cyanobacterial community structure differed between saline and freshwater lakes. No clear bioregionalization was observed, as clusters of community similarity encompassed lakes from distinct ACBRs. Most phylotypes (77.0%) were related to cyanobacterial lineages (defined at ≥99.0% 16S rRNA gene sequence similarity) restricted to the cold biosphere, including lineages potentially endemic to Antarctica (55.4%). The latter were generally rare and restricted to a small number of lakes, while more ubiquitous phylotypes were generally abundant and present in different ACBRs. These results point to a widespread distribution of some cosmopolitan cyanobacterial phylotypes across the different Antarctic ice-free regions, but also suggest the existence of dispersal barriers both within and between Antarctica and the other continents.


Revista Argentina De Microbiologia | 2013

Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification

Renaud Berlemont; Olivier Spee; Maud Delsaute; Yannick Lara; Jörg Schuldes; Carola Simon; Pablo Power; Rolf Daniel; Moreno Galleni


Aquatic Microbial Ecology | 2013

A cultivation-independent approach for the genetic and cyanotoxin characterization of colonial cyanobacteria

Yannick Lara; Alexandre Lambion; Diana Menzel; Geoffrey A. Codd; Annick Wilmotte


Archive | 2011

CYANOBACTERIAL BLOOMS : TOXICITY, DIVERSITY, MODELLING AND MANAGEMENT

Jean-Pierre Descy; Gisèle Verniers; Laurent Viroux; Yannick Lara; Annick Wilmotte; Wim Vyverman; Pieter Vanormelingen; J. Van Wichelen; I. van Gremberghe; Ludwig Triest; Anatoly Peretyatko; Etienne Everbecq; Geoffrey A. Codd


Archive | 2008

A new approach to analyze genotypes of colony-forming cyanobacteria from environmental samples.

Yannick Lara; Christophe Boutte; Anatoly Peretyatko; Annick Wilmotte

Collaboration


Dive into the Yannick Lara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Véronique Simons

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge