Yanning Qian
Nanjing Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanning Qian.
Brain Behavior and Immunity | 2015
Shunmei Lu; Chan-Juan Yu; Ya-Hua Liu; Hongquan Dong; Xiang Zhang; Susu Zhang; Liu-Qing Hu; Feng Zhang; Yanning Qian; Bo Gui
Neuro-inflammation plays a key role in the occurrence and development of postoperative cognitive dysfunction (POCD). Although S100A8 and Toll-like receptor 4 (TLR4) have been increasingly recognized to contribute to neuro-inflammation, little is known about the interaction between S100A8 and TLR4/MyD88 signaling in the process of systemic inflammation that leads to neuro-inflammation. Firstly, we demonstrated that C57BL/6 wide-type mice exhibit cognitive deficit 24h after the tibial fracture surgery. Subsequently, increased S100A8 and S100A9 expression was found in the peripheral blood mononuclear cells (PBMCs), spleen, and hippocampus of C57BL/6 wide-type mice within 48h after the surgery. Pre-operative administration of S100A8 antibody significantly inhibited hippocampal microgliosis and improved cognitive function 24h after the surgery. Secondly, we also observed TLR4/MyD88 activation in the PBMCs, spleen, and hippocampus after the surgery. Compared with those in their corresponding wide-type mice, TLR4(-/-) and MyD88(-/-) mice showed lower immunoreactive area of microglia in the hippocampal CA3 region after operation. TLR4 deficiency also led to reduction of CD45(hi)CD11b(+) cells in the brain and better performance in both Y maze and open field test after surgery, suggesting a new regulatory mechanism of TLR4-dependent POCD. At last, the co-location of S100A8 and TLR4 expression in spleen after operation suggested a close relationship between them. On the one hand, S100A8 could induce TLR4 activation of CD11b(+) cells in the blood and hippocampus via intraperitoneal or intracerebroventricular injection. On the other hand, TLR4 deficiency conversely alleviated S100A8 protein-induced hippocampal microgliosis. Furthermore, the increased expression of S100A8 protein in the hippocampus induced by surgery sharply decreased in both TLR4 and MyD88 genetically deficient mice. Taken together, these data suggest that S100A8 exerts pro-inflammatory effect on the occurrence and development of neuro-inflammation and POCD by activating TLR4/MyD88 signaling in the early pathological process of the postoperative stage.
Medical science monitor basic research | 2014
Hongquan Dong; Xiang Zhang; Yanning Qian
It has been determined that there is extensive communication between the immune system and the central nervous system (CNS). Proinflammatory cytokines play a key role in this communication. There is an emerging realization that glia and microglia, in particular, (which are the brain’s resident macrophages), are an important source of inflammatory mediators and may have fundamental roles in CNS disorders. Microglia respond also to proinflammatory signals released from other non-neuronal cells, principally those of immune origin, such as mast cells. Mast cells reside in the CNS and are capable of migrating across the blood-brain barrier (BBB) in situations where the barrier is compromised as a result of CNS pathology. Mast cells are both sensors and effectors in communication among nervous, vascular, and immune systems. In the brain, they reside on the brain side of the BBB, and interact with astrocytes, microglia, and blood vessels via their neuroactive stored and newly synthesized chemicals. They are first responders, acting as catalysts and recruiters to initiate, amplify, and prolong other immune and nervous responses upon activation. Mast cells both promote deleterious outcomes in brain function and contribute to normative behavioral functioning, particularly cognition and emotion. Mast cells may play a key role in treating systemic inflammation or blockade of signaling pathways from the periphery to the brain.
Journal of Neuroinflammation | 2014
Hongquan Dong; Xiang Zhang; Xiaonan Dai; Shunmei Lu; Bo Gui; Wenjie Jin; Susu Zhang; Shu Zhang; Yanning Qian
BackgroundLithium, an effective mood stabilizer for the treatment of bipolar disorders, has been recently suggested to have a role in neuroprotection during neurodegenerative diseases. The pathogenesis of neurological disorders often involves the activation of microglia and associated inflammatory processes. Thus, in this study, we aimed to understand the role of lithium in microglial activation and to elucidate the underlying mechanism(s).MethodsPrimary microglial cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). The cells were assessed regarding the responses of pro-inflammatory cytokines, and the associated signaling pathways were evaluated.ResultsLithium significantly inhibited LPS-induced microglial activation and pro-inflammatory cytokine production. Further analysis showed that lithium could activate PI3K/Akt signaling. Analyses of the associated signaling pathways demonstrated that the lithium pretreatment led to the suppression of LPS-induced toll-like receptor 4 (TLR4) expressions via the PI3K/Akt/FoxO1 pathway.ConclusionsThis study demonstrates that lithium can inhibit LPS-induced TLR4 expression and microglial activation through the PI3K/Akt/FoxO1 signaling pathway. These results suggest that lithium plays an important role in microglial activation and neuroinflammation-related diseases, which may lead to a new therapeutic strategy for the treatment of neuroinflammation-related disorders.
Neuroreport | 2013
Wenjie Jin; Shan-Wu Feng; Zhou Feng; Shunmei Lu; Tao Qi; Yanning Qian
Astrocytes are proving to be critical for the development of cognitive functions. In addition, astrocytic activation contributes to cognitive impairment induced by chronic cerebral hypoperfusion. Minocycline has been shown to exhibit long-term neuroprotective effects in vascular cognitive impairment rat models through the inhibition of astrogliosis, and has demonstrated potential for the prevention and treatment of postoperative cognitive decline in elderly patients. This study aimed to examine the effect of minocycline on hippocampal astrocytes and long-term postoperative cognitive dysfunction in aged mice. Mice were intraperitoneally injected with 45 mg/kg minocycline once a day for 30 days after 70% hepatectomy. Hippocampus-dependent spatial memory ability was evaluated using the Morris water maze test. The expression levels of hippocampal glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 were evaluated by western blotting, and the hippocampal mRNA relative expression levels of tumor necrosis factor-&agr;, interleukin-1&bgr;, and interleukin-6 were tested using real-time PCR. The Morris water maze test showed that escape latency and swim distance were significantly prolonged by the surgery, but the extent of impairment was mitigated by minocycline treatment. Hippocampal GFAP levels and mRNA levels of tumor necrosis factor-&agr;, interleukin-1&bgr;, and interleukin-6 showed corresponding changes that were consistent with the variations in spatial memory. Minocycline was able to alleviate hepatectomy-related long-term spatial memory impairment in aged mice, and was associated with reduced levels of hippocampal GFAP and proinflammatory cytokines resulting from astrocytic activation.
Inflammation | 2014
Xiaobao Zhang; Jun Wang; Wenyi Qian; Jingjing Zhao; Li Sun; Yanning Qian; Hang Xiao
Astrocytes play an important role in immune regulation in the central nervous system (CNS). Dexmedetomidine (DEX) has been reported to exert anti-inflammatory effects on astrocytes stimulated by lipopolysaccharide (LPS) both in vitro and in vivo studies. However, the underlying molecular mechanisms remain poorly understood. This study was designed to evaluate the effects of DEX on tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) gene expressions in LPS-challenged astrocytes. Moreover, c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK) pathways in LPS-challenged astrocytes were also investigated. In the present study, astrocytes were stimulated with LPS in the absence and presence of various concentrations of DEX. With real-time PCR assay, we found that LPS significantly increased expressions of TNF-α and IL-6 in mRNA level; however, these effects could be attenuated by DEX. Furthermore, JNK pathway might be involved in LPS-induced astrocyte activation because JNK phosphorylation was significantly increased, and the inhibition of this pathway mediated by DEX as well as SP600125 (JNK inhibitor) decreased TNF-α and IL-6 expressions. Moreover, p38 MAPK was also activated by LPS; however, this pathway seemed to have not participated in DEX-mediated LPS-induced inflammation. These results, taken together, suggest that JNK rather than p38 MAPK signal pathway, provides the potential target for the therapeutic effects of DEX for neuronal inflammatory reactions.
Upsala Journal of Medical Sciences | 2010
Qifeng Tang; Yanning Qian; Qingwei Zhang; Jianjun Yang; Zhongyun Wang
Abstract Fentanyl-induced cough is not an uncommon condition during the induction of general anesthesia. A preliminary randomized controlled study was designed to observe the effects of different priming doses of propofol on fentanyl-induced cough during anesthesia induction. A total of 120 patients were randomized into 4 groups (n = 30) to receive the intravenous injection of intralipid (group I), propofol 1 mg·kg-1 (group II), propofol 1.5 mg·kg-1 (group III), or propofol 2 mg·kg-1 (group IV) 1 minute before a bolus of fentanyl 2.5 µg·kg-1. The occurrence and severity of cough were recorded for 2 minutes after fentanyl bolus. The severity of cough was graded as none (grade 0), mild (grade 1–2), moderate (grade 3–4), or severe (grade 5 or more). The average bolus time of fentanyl was 1.5 ± 0.3 seconds in the present study. The incidence of fentanyl-induced cough was 80.0% in group I, 40.0% in group II, 6.7% in group III, and 3.3% in group IV, respectively. Groups II, III, and IV had a lower incidence and less severity of cough than group I (P < 0.05). Groups III and IV had a lower incidence and less severity of cough than group II (P < 0.05). In summary, a priming dose of more than 1 mg·kg-1 of propofol is effective to suppress fentanyl-induced cough in a dose-dependent manner. We suggest using a priming dose of propofol 1.5 mg·kg-1 to suppress cough during the anesthesia induction with propofol and fentanyl in clinical practice.
Journal of Neuroinflammation | 2016
Yang Cai; Hong Kong; Yinbing Pan; Lai Jiang; Xiu-Xiu Pan; Liang Hu; Yanning Qian; Chun-Yi Jiang; Wen-Tao Liu
BackgroundThe development of antinociceptive tolerance following repetitive administration of opioid analgesics significantly hinders their clinical use. Evidence has accumulated indicating that microglia within the spinal cord plays a critical role in morphine tolerance. The inhibitor of microglia is effective to attenuate the tolerance; however, the mechanism is not fully understood. Our present study investigated the effects and possible mechanism of a natural product procyanidins in improving morphine tolerance via its specific inhibition on NOD-like receptor protein3 (NLRP3) inflammasome in microglia.MethodsCD-1 mice were used for tail-flick test to evaluate the degree of pain. The microglial cell line BV-2 was used to investigate the effects and the mechanism of procyanidins. Reactive oxygen species (ROS) produced from BV-2 cells was evaluated by flow cytometry. Cell signaling was measured by western blot assay and immunofluorescence assay.ResultsCo-administration of procyanidins with morphine potentiated its antinociception effect and attenuated the development of acute and chronic morphine tolerance. Procyanidins also inhibited morphine-induced increase of interleukin-1β and activation of NOD-like receptor protein3 (NLRP3) inflammasome. Furthermore, procyanidins decreased the phosphorylation of p38 mitogen-activated protein kinase, inhibited the translocation of nuclear factor-κB (NF-κB), and suppressed the level of reactive oxygen species in microglia.ConclusionsProcyanidins suppresses morphine-induced activation of NLRP3 inflammasome and inflammatory responses in microglia, and thus resulting in significant attenuation of morphine antinociceptive tolerance.
Cellular Physiology and Biochemistry | 2015
Xiang Zhang; Hongquan Dong; Susu Zhang; Shunmei Lu; Jie Sun; Yanning Qian
Background: Microglia activation mediated by toll-like receptor 4 (TLR4) plays an important role in neuroinflammation and postoperative cognitive dysfunction (POCD). Diabetes mellitus (DM) has been recently suggested as an independent risk factor for POCD. In this study, we investigate the potential exacerbation of the inflammatory response in primary microglia due to high glucose conditions. Methods: Primary microglial cells were exposed to normal glucose (25 mmol/L) and high glucose (35 mmol/L) levels alone or with lipopolyscaccharide (LPS 0, 2, 5, 10 ng/mL). The pro-inflammatory response of the cells was assessed by measuring changes in cytokine levels and the evaluation of associated signaling pathways. Results: Neither high glucose nor low LPS (≤5ng/ml) alone had an effect on TNF-a and IL-6 levels, but the combination of low LPS and high glucose stimulated the inflammatory response. Analyses of the associated signaling pathways demonstrated that high glucose enhanced the LPS-induced microglial activation via the TLR4/JAK2/STAT3 pathway. Conclusion: This study demonstrates that high glucose, one of the key abnormalities characteristic of DM, can augment LPS-induced microglial activation and inflammatory cytokine levels through the TLR4/JAK2/STAT3 pathway, offering new insight into the pathophysiological relationship between DM and POCD.
Molecular Neurobiology | 2017
Hongquan Dong; Xiang Zhang; Yiming Wang; Xiqiao Zhou; Yanning Qian; Shu Zhang
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the “first responder” in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the “mast cell degranulator” compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. “Mast cell stabilizer” disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient KitW-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.
Cellular Physiology and Biochemistry | 2016
Nana Li; Xiang Zhang; Hongquan Dong; Susu Zhang; Jie Sun; Yanning Qian
Background/Aims: Astrocytes are critical for the development of postoperative cognitive dysfunction (POCD). In addition, astrocytes express toll-like receptors 4 (TLR4) and build up responses to innate immune triggers by releasing pro-inflammatory molecules. The pathogenesis of neurological disorders often involves the activation of astrocytes and associated inflammatory processes. Lithium, a primary drug for the treatment of bipolar disorder, has recently been suggested to have a role in neuroprotection during neurodegenerative diseases. In this study, we aimed to investigate whether lithium can ameliorate LPS-induced astrocytes activation via inhibition of TLR4 expression. Methods: Primary astrocytes cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). Cellular activation, cytokine production, and TLR4 expression, were assessed. Results: Lithium significantly inhibited LPS-induced astrocytes activation and pro-inflammatory cytokine production, as well as LPS-induced TLR4 expression. Conclusions: Lithium can inhibit LPS-induced TLR4 expression and astrocytes activation. These results indicate that lithium plays an important role in astrocytes activation and neuroinflammation-related diseases, which may open new avenues for neuroscience and biomedical research, and also offers new insight into the treatment of POCD.