Yanpeng Yang
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanpeng Yang.
vehicular technology conference | 2015
Yanpeng Yang; Ki Won Sung
Dense deployment which brings small base stations (BS) closer to mobile devices is considered as a promising solution to the booming traffic demand. Meanwhile, the utilization of new frequency bands and spectrum aggregation techniques provide more options for spectrum choice.Whether to increase BS density or to acquire more spectrum is a key strategic question for mobile operators. In this paper, we investigate the relationship between BS density and spectrum with regard to individual user throughput target. Our work takes into account load-dependent interference model and various traffic demands. Numerical results show that densification is more effective in sparse networks than in already dense networks. In sparse networks, doubling BS density results in almost twofold throughput increase. However, in dense networks where BSs outnumber users, more than 10 times of BS density is needed to double user throughput. Meanwhile, spectrum has a linear relationship with user throughput for a given BS density. The impact of traffic types is also discussed. Even with the same area throughput requirement, different combination of user density and individual traffic amount leads to different needs for BS density and spectrum.
IEEE\/OSA Journal of Optical Communications and Networking | 2014
Yanpeng Yang; Ki Won Sung; Lena Wosinska; Jiajia Chen
Several studies have shown that optical-fiber-based backhauling offers a future proof solution to handle rapidly increasing traffic in wireless access networks and outperforms other existing backhauling technologies, such as microwave and copper, in terms of capacity, scalability, and sustainability. However, the deployment cost of fiber infrastructure is relatively high and it may be difficult to provide a cost efficient and flexible protection strategy for a fiber backhauling network. Considering that protection is very important to avoid service interruption in a high-capacity mobile backhauling network, in this paper we propose a hybrid fiber and microwave protection scheme for mobile backhauling based on a passive optical network (PON). The proposed reliable architecture is compatible with any wavelength division multiplexing (WDM)-based PON, e.g., pure WDM PON and a hybrid time and wavelength division multiplexing (TWDM) PON, offering high flexibility and relatively low deployment cost. The backup for the feeder fiber is provided by dual homing, while the protection of the distribution section can be established via a microwave connection between two base stations in case high reliability performance is required, e.g., for macrocells covering large service areas. We have carried out an extensive assessment of our approach in terms of connection availability, failure impact, complexity, and flexibility in providing resiliency. We also show a comparison with other existing solutions. The evaluation results confirm that our scheme can achieve relatively high flexibility and reliability performance while maintaining low complexity compared with the existing approaches.
ieee international symposium on dynamic spectrum access networks | 2015
Yanpeng Yang; Ki Won Sung
Dense deployment of base stations (BSs) and multi-antenna techniques are considered as key enablers for future mobile networks. Meanwhile, spectrum sharing techniques and utilization of higher frequency bands make more bandwidth available. An important question for future system design is which element is more effective than others. In this paper, we introduce the concept of technical rate of substitution (TRS) from microeconomics and study the TRS of spectrum in terms of BS density and antenna number per BS. Numerical results show that TRS becomes higher with increasing user data rate requirement, suggesting that spectrum is the most effective means of provisioning extremely fast mobile broadband.
european conference on networks and communications | 2017
Yanpeng Yang; Ki Won Sung; Jihong Park; Seong Lyun Kim; Kwang Soon Kim
In an ultra-dense network (UDN) where there are more base stations (BSs) than active users, it is possible that many BSs are instantaneously left idle. Thus, how to utilize these dormant BSs by means of cooperative transmission is an interesting question. In this paper, we investigate the performance of a UDN with two types of cooperation schemes: non-coherent joint transmission (JT) without channel state information (CSI) and coherent JT with full CSI knowledge. We consider a bounded dual-slope path loss model to describe UDN environments where a user has several BSs in the near-field and the rest in the far-field. Numerical results show that non-coherent JT cannot improve the user spectral efficiency (SE) due to the simultaneous increment in signal and interference powers. For coherent JT, the achievable SE gain depends on the range of near-field, the relative densities of BSs and users, and the CSI accuracy. Finally, we assess the energy efficiency (EE) of cooperation in UDN. Despite costing extra energy consumption, cooperation can still improve EE under certain conditions.
ieee international symposium on dynamic spectrum access networks | 2015
Ashraf Awadelkarim Widaa Ahmed; Yanpeng Yang; Ki Won Sung; Jan Markendahl
The continuing growth in the mobile data traffic magnifies the challenges for the design and deployment of scalable high-capacity mobile networks that can meet the future demand at reasonable cost levels. In order to meet the future traffic demand, an operator should invest on both infrastructure, i.e. densification of base stations, and more radio spectrum. Knowing the effectiveness of each element is thus of utmost importance for minimizing the investment cost. In this paper, we study the economic substitutability between spectrum and densification. For this, we measure the engineering value of spectrum, which refers to the potential saving in the total cost of ownership (TCO) as result of acquiring additional spectrum resources. Two countries are considered to represent different market situations: India with dense population and high spectrum price and Sweden with moderate population density and low spectrum fee. Numerical results indicate that additional amount of spectrum substantially relieves the need for densifying radio base stations, particularly for providing high user data rate in dense India. Nonetheless, the engineering value of spectrum is low in India (i.e. spectrum acquisition has less cost benefit) under the high spectrum price of today, whereas spectrum is instrumental in lowering the total cost of ownership in Sweden. Our finding highlights the importance of affordable and sufficient spectrum resources for future mobile broadband provisioning.
Proceedings of the 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems - mmNets '18 | 2018
Hossein Shokri Ghadikolaei; Yanpeng Yang; Marina Petrova; Ki Won Sung; Carlo Fischione
In millimeter-wave wireless networks, the use of narrow beams, required to compensate for the severe path-loss, complicates the cell-discovery and initial access. In this paper, we investigate the feasibility of random beamforming and enhanced exhaustive search for cell-discovery by analyzing the latency and detection failure probability in the control-plane and the user throughput in the data-plane. We show that, under realistic propagation model and antenna patterns, both approaches are suitable for 3GPP New Radio cellular networks. The performance gain, compared to the heavily used exhaustive and iterative search schemes, is more prominent in dense networks and large antenna regimes and can be further improved by optimizing the beamforming codebooks.
international conference on cognitive radio oriented wireless networks and communications | 2013
Yanpeng Yang; Lei Shi; Jens Zander
conference on computer communications workshops | 2018
Yanpeng Yang; Hossein Shokri Ghadikolaei; Carlo Fischione; Marina Petrova; Ki Won Sung
IEEE Communications Letters | 2018
Donggu Kim; Yanpeng Yang; Ki Won Sung; Joonhyuk Kang
arXiv: Networking and Internet Architecture | 2017
Yanpeng Yang; Jihong Park; Ki Won Sung