Yanping Mao
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanping Mao.
Bioresource Technology | 2013
Yanping Mao; Yu Xia; Tong Zhang
The present study, for the first time, reported a Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial community enriched from different seed sludges including activated sludge and anaerobic digestion sludge. After 244 days enrichment, nitrogen removal rates reached up to 0.2 mg N/mg VSS/d which were comparable to that of the model organism Paracoccus denitrificans under the same conditions. Furthermore, high-throughput sequencing was applied to characterize and compare the seed sludges and enriched cultures. Operational taxonomic units (OTU)-based analysis (97% similarity cutoff) of total 280,000 16S rRNA gene V6 region sequences from 7 sludge samples (40,000 sequences per sample) revealed that the microbial diversity decreased after the enrichment, indicated by OTU numbers drop of 55-60%. Thauera species in the class of β-Proteobacteria were enriched into the dominant populations with relative abundances of 47-62%, regardless of seed sludge sources.
Scientific Reports | 2015
Yuanqing Chao; Yanping Mao; Zhiping Wang; Tong Zhang
The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.
Environmental Science & Technology | 2014
Yanping Mao; Ke Yu; Yu Xia; Yuanqing Chao; Tong Zhang
We report the first integrated metatranscriptomic and metagenomic analysis of enhanced biological phosphorus removal (EBPR) sludge. A draft genome of Candidatus Accumulibacter spp. strain HKU-1, a member of Clade IB, was retrieved. It was estimated to be ∼90% complete and shared average nucleotide identities of 83% and 88% with the finished genome CAP IIA UW-1 and the draft genome CAP IA UW-2, respectively. Different from CAP IIA UW-1, the phosphotransferase (pap) in polyphosphate metabolism and V-ATPase in orthophosphate transport were absent from CAP IB HKU-1. Additionally, unlike CAP IA UW-2, CAP IB HKU-1 carried the genes for carbon fixation and nitrogen fixation. Despite these differences, the key genes required for acetate uptake, glycolysis and polyhydroxyalkanoate (PHA) synthesis were conserved in all these Accumulibacter genomes. The preliminary metatranscriptomic results revealed that the most significantly up-regulated genes of CAP IB HKU-1 from the anaerobic to the aerobic phase were responsible for assimilatory sulfate reduction, genetic information processing and phosphorus absorption, while the down-regulated genes were related to N2O reduction, PHA synthesis and acetyl-CoA formation. This study yielded another important Accumulibacter genome, revealed the functional difference within the Accumulibacter Type I, and uncovered the genetic responses to EBPR stimuli at a higher resolution.
Environmental Science & Technology | 2016
Yu Deng; Yanping Mao; Bing Li; Chao Yang; Tong Zhang
Two aerobic sulfadiazine (SDZ) degrading bacterial strains, D2 and D4, affiliated with the genus Arthrobacter, were isolated from SDZ-enriched activated sludge. The degradation of SDZ by the two isolates followed first-order decay kinetics. The half-life time of complete SDZ degradation was 11.3 h for strain D2 and 46.4 h for strain D4. Degradation kinetic changed from nongrowth to growth-linked when glucose was introduced as the cosubstrate, and accelerated biodegradation rate was observed after the adaption period. Both isolates could degrade SDZ into 12 biodegradation products via 3 parallel pathways, of which 2-amino-4-hydroxypyrimidine was detected as the principal intermediate product toward the pyrimidine ring cleavage. Compared with five Arthrobacter strains reported previously, D2 and D4 were the only Arthrobacter strains which could degrade SDZ as the sole carbon source. The draft genomes of D2 and D4, with the same completeness of 99.7%, were compared to other genomes of related species. Overall, these two isolates shared high genomic similarities with the s-triazine-degrading Arthrobacter sp. AK-YN10 and the sulfonamide-degrading bacteria Microbacterium sp. C448. In addition, the two genomes contained a few significant regions of difference which may carry the functional genes involved in sulfonamide degradation.
Scientific Reports | 2015
Yanping Mao; David W. Graham; Hideyuki Tamaki; Tong Zhang
Here we employed quantitative real-time PCR (qPCR) assays for polyphosphate kinase 1 (ppk1) and 16S rRNA genes to assess relative abundances of dominant clades of Candidatus Accumulibacter phosphatis (referred to Accumulibacter) in 18 globally distributed full-scale wastewater treatment plants (WWTPs) from six countries. Accumulibacter were not only detected in the 6 WWTPs performing biological phosphorus removal, but also inhabited in the other 11 WWTPs employing conventional activated sludge (AS) with abundances ranging from 0.02% to 7.0%. Among the AS samples, clades IIC and IID were found to be dominant among the five Accumulibacter clades. The relative abundance of each clade in the Accumulibacter lineage significantly correlated (p < 0.05) with the influent total phosphorus and chemical oxygen demand instead of geographical factors (e.g. latitude), which showed that the local wastewater characteristics and WWTPs configurations could be more significant to determine the proliferation of Accumulibacter clades in full-scale WWTPs rather than the geographical location. Moreover, two novel Accumulibacter clades (IIH and II-I) which had not been previously detected were discovered in two enhanced biological phosphorus removal (EBPR) WWTPs. The results deepened our understanding of the Accumulibacter diversity in environmental samples.
Environmental Technology | 2013
Lehua Zhang; Yanping Mao; Jingxing Ma; Dongmei Li; Haifeng Shi; Yongdi Liu; Lankun Cai
This work focused on studying the effect of the chemical oxidation demand to sulfide ratio (COD/S) on power generation and sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater containing organic contaminants. The maximum power density achieved was 20±1 W m −3 V Anode and the Coulombic yield was 20±2%. The COD/S of influent played an important role in elemental sulfur and sulfate production because of competition between acetate oxidation and element sulfur oxidation to sulfate in the anode. When the COD/S was 12.50/1, more than 74.0% of sulfide was converted into elemental sulfur after 24 hours of operation. The effect of the COD/S on power generation was negligible when the COD/S ranged between 4.85/1 and 18.53/1. After 24 hours, the COD removals were 110±6, 213±9, 375±8 and 410±10 mg l −1 when the COD/S was 4.85/1, 8.9/1, 12.5/1 and 18.53/1, respectively. The COD removal increased with the increasing COD of the influent, which fitted to the model of first-order reaction kinetics.
Water Research | 2017
Yulin Wang; Liping Ma; Yanping Mao; Xiao-Tao Jiang; Yu Xia; Ke Yu; Bing Li; Tong Zhang
The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapores and Stanfords samples and ammonia-oxidizing archaea (AOA) in Hainans sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems.
Microbial Ecology | 2014
Zhiping Wang; Feng Guo; Yanping Mao; Yu Xia; Tong Zhang
Glycogen-accumulating organisms (GAOs) may compete with phosphate-accumulating organisms (PAOs) for short-chain fatty acids (VFAs) in anaerobic polyhydroxyalkanoates (PHA) synthesis, but no consequently aerobic polyphosphate accumulation in enhanced biological phosphorus removal (EBPR) process, thus deteriorating the EBPR process. They are detected frequently in the deteriorated EBPR process, but their metabolisms are still far from our comprehensions for there is seldom pure culture. In this study, a nearly complete draft genome of a GAOs in Defluviicoccus cluster II, GAO-HK, is recruited from the metagenome of activated sludge in a full-scale industrial anoxic/aerobic wastewater plant. Comparative genomics reveal similar metabolisms of PHA and glycogen in GAOs of GAO-HK, Defluviicoccus tetraformis TFO71 (TFO71) and Competibacter phosphatis clade IIA (CPIIA), and PAOs of Accumulibacter clade IIA UW-1 (UW-1) and Tetrasphaera elongata Lp2 (Lp2). Although there are similar gene cassettes related with polyphosphate metabolism in these GAOs and PAOs, especially for Defluviicoccus-relative bacteria and UW-1, ppk1 in GAOs are diverse from those in the identified PAOs, implying the difference of polyphosphate metabolism in GAOs and PAOs. Additionally, genes related to the dissimilatory denitrification are absent in TFO71 and GAO-HK, implying that additional nitrate or nitrite may favor PAOs over Defluviicoccus-relative GAOs. Therefore, PAOs suffering from competition of Defluviicoccus-relative GAOs might be rescued with the additional nitrate/nitrite, which is important to improve the stability of EBPR processes.
Scientific Reports | 2016
An Ni Zhang; Yanping Mao; Tong Zhang
We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.
PLOS ONE | 2016
Yanping Mao; Zhiping Wang; Li-Guan Li; Xiao-Tao Jiang; Xuxiang Zhang; Hongqiang Ren; Tong Zhang
A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively.