Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanqin Gao is active.

Publication


Featured researches published by Yanqin Gao.


Stroke | 2012

Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia

Xiaoming Hu; Peiying Li; Yanling Guo; Haiying Wang; Rehana K. Leak; Songela Chen; Yanqin Gao; Jun Chen

Background and Purpose— Mononuclear phagocytes are highly plastic cells that assume diverse phenotypes in response to microenvironmental signals. The phenotype-specific roles of microglia/macrophages in ischemic brain injury are poorly understood. A comprehensive characterization of microglia/macrophage polarization after ischemia may advance our knowledge of poststroke damage/recovery. Methods— Focal transient cerebral ischemia was induced in mice for 60 minutes; animals were euthanized at 1 to 14 days of reperfusion. Reverse-transcriptase polymerase chain reaction and immunohistochemical staining for M1 and M2 markers were performed to characterize phenotypic changes in brain cells, including microglia and infiltrating macrophages. In vitro experiments using a transwell system, a conditioned medium transfer system, or a coculture system allowing cell-to-cell contacts were used to further elucidate the effect of neuronal ischemia on microglia/macrophage polarization and, conversely, the effect of microglia/macrophage phenotype on the fate of ischemic neurons. Results— Local microglia and newly recruited macrophages assume the M2 phenotype at early stages of ischemic stroke but gradually transformed into the M1 phenotype in peri-infarct regions. In vitro experiments revealed that ischemic neurons prime microglial polarization toward M1 phenotype. M1-polarized microglia or M1-conditioned media exacerbated oxygen glucose deprivation–induced neuronal death. In contrast, maintaining the M2 phenotype of microglia protected neurons against oxygen glucose deprivation. Conclusions— Our results suggest that microglia/macrophages respond dynamically to ischemic injury, experiencing an early “healthy” M2 phenotype, followed by a transition to a “sick” M1 phenotype. These dual and opposing roles of microglia/macrophages suggest that stroke therapies should be shifted from simply suppressing microglia/macrophage toward adjusting the balance between beneficial and detrimental microglia/macrophage responses.


Nature Reviews Neurology | 2015

Microglial and macrophage polarization—new prospects for brain repair

Xiaoming Hu; Rehana K. Leak; Yejie Shi; Jun Suenaga; Yanqin Gao; Ping Zheng; Jun Chen

The traditional view of the adult brain as a static organ has changed in the past three decades, with the emergence of evidence that it remains plastic and has some regenerative capacity after injury. In the injured brain, microglia and macrophages clear cellular debris and orchestrate neuronal restorative processes. However, activation of these cells can also hinder CNS repair and expand tissue damage. Polarization of macrophage populations toward different phenotypes at different stages of injury might account for this dual role. This Perspectives article highlights the specific roles of polarized microglial and macrophage populations in CNS repair after acute injury, and argues that therapeutic approaches targeting cerebral inflammation should shift from broad suppression of microglia and macrophages towards subtle adjustment of the balance between their phenotypes. Breakthroughs in the identification of regulatory molecules that control these phenotypic shifts could ultimately accelerate research towards curing brain disorders.


The Journal of Neuroscience | 2007

Critical Role of Calpain I in Mitochondrial Release of Apoptosis-Inducing Factor in Ischemic Neuronal Injury

Guodong Cao; Juan Xing; Xiao Xiao; Anthony K.F. Liou; Yanqin Gao; Xiao Ming Yin; Robert S. B. Clark; Steven H. Graham; Jun Chen

Loss of mitochondrial membrane integrity and release of apoptogenic factors are a key step in the signaling cascade leading to neuronal cell death in various neurological disorders, including ischemic injury. Emerging evidence has suggested that the intramitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and promotes caspase-independent cell death induced by glutamate toxicity, oxidative stress, hypoxia, or ischemia. However, the mechanism by which AIF is released from mitochondria after neuronal injury is not fully understood. In this study, we identified calpain I as a direct activator of AIF release in neuronal cultures challenged with oxygen–glucose deprivation and in the rat model of transient global ischemia. Normally residing in both neuronal cytosol and mitochondrial intermembrane space, calpain I was found to be activated in neurons after ischemia and to cleave intramitochondrial AIF near its N terminus. The truncation of AIF by calpain activity appeared to be essential for its translocation from mitochondria to the nucleus, because neuronal transfection of the mutant AIF resistant to calpain cleavage was not released after oxygen–glucose deprivation. Adeno-associated virus-mediated overexpression of calpastatin, a specific calpain-inhibitory protein, or small interfering RNA-mediated knockdown of calpain I expression in neurons prevented ischemia-induced AIF translocation. Moreover, overexpression of calpastatin or knockdown of AIF expression conferred neuroprotection against cell death in neuronal cultures and in hippocampal CA1 neurons after transient global ischemia. Together, these results define calpain I-dependent AIF release as a novel signaling pathway that mediates neuronal cell death after cerebral ischemia.


Progress in Neurobiology | 2013

Emerging Roles of Nrf2 and Phase II Antioxidant Enzymes in Neuroprotection

Meijuan Zhang; Chengrui An; Yanqin Gao; Rehana K. Leak; Jun Chen; Feng Zhang

Phase II metabolic enzymes are a battery of critical proteins that detoxify xenobiotics by increasing their hydrophilicity and enhancing their disposal. These enzymes have long been studied for their preventative and protective effects against mutagens and carcinogens and for their regulation via the Keap1 (Kelch-like ECH associated protein 1)/Nrf2 (Nuclear factor erythroid 2 related factor 2)/ARE (antioxidant response elements) pathway. Recently, a series of studies have reported the altered expression of phase II genes in postmortem tissue of patients with various neurological diseases. These observations hint at a role for phase II enzymes in the evolution of such conditions. Furthermore, promising findings reveal that overexpression of phase II genes, either by genetic or chemical approaches, confers neuroprotection in vitro and in vivo. Therefore, there is a need to summarize the current literature on phase II genes in the central nervous system (CNS). This should help guide future studies on phase II genes as therapeutic targets in neurological diseases. In this review, we first briefly introduce the concept of phase I, II and III enzymes, with a special focus on phase II enzymes. We then discuss their expression regulation, their inducers and executors. Following this background, we expand our discussion to the neuroprotective effects of phase II enzymes and the potential application of Nrf2 inducers to the treatment of neurological diseases.


Journal of Cerebral Blood Flow and Metabolism | 2005

Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway.

Yanqin Gao; Armando P. Signore; Wei Yin; Guodong Cao; Xiao Ming Yin; Fengyan Sun; Yumin Luo; Steven H. Graham; Jun Chen

c-Jun N-terminal kinase (JNK) is an important stress-responsive kinase that is activated by various forms of brain insults. In this study, we have examined the role of JNK activation in neuronal cell death in a murine model of focal ischemia and reperfusion; furthermore, we investigated the mechanism of JNK in apoptosis signaling, focusing on the mitochondrial-signaling pathway. We show here that JNK activity was induced in the brain 0.5 to 24 h after ischemia. Systemic administration of SP600125, a small molecule JNK-specific inhibitor, diminished JNK activity after ischemia and dose-dependently reduced infarct volume. c-Jun N-terminal kinase inhibition also attenuated ischemia-induced expression of Bim, Hrk/DP5, and Fas, but not the expression of Bcl-2 or FasL. In strong support of a role for JNK in promoting the mitochondrial apoptosis-signaling pathway, JNK inhibition prevented ischemia-induced mitochondrial translocation of Bax and Bim, release of cytochrome c and Smac, and activation of caspase-9 and caspase-3. The potential mechanism by which JNK promoted Bax translocation after ischemia was further studied using coimmunoprecipitation, and the results revealed that JNK activation caused serine phosphorylation of 14-3-3, a cytoplasmic sequestration protein of Bax, leading to Bax disassociation from 14-3-3 and subsequent translocation to mitochondria. These results confirm the role of JNK as a critical cell death mediator in ischemic brain injury, and suggest that one of the mechanisms by which JNK triggers the mitochondrial apoptosis-signaling pathway is via promoting Bax and Bim translocation.


Journal of Cerebral Blood Flow and Metabolism | 2013

Microglia/macrophage polarization dynamics in white matter after traumatic brain injury

Guohua Wang; Jia Zhang; Xiaoming Hu; Lili Zhang; Leilei Mao; Xiaoyan Jiang; Anthony K.F. Liou; Rehana K. Leak; Yanqin Gao; Jun Chen

Mononuclear phagocytes are a population of multi-phenotypic cells and have dual roles in brain destruction/reconstruction. The phenotype-specific roles of microglia/macrophages in traumatic brain injury (TBI) are, however, poorly characterized. In the present study, TBI was induced in mice by a controlled cortical impact (CCI) and animals were killed at 1 to 14 days post injury. Real-time polymerase chain reaction (RT–PCR) and immunofluorescence staining for M1 and M2 markers were performed to characterize phenotypic changes of microglia/macrophages in both gray and white matter. We found that the number of M1-like phagocytes increased in cortex, striatum and corpus callosum (CC) during the first week and remained elevated until at least 14 days after TBI. In contrast, M2-like microglia/macrophages peaked at 5 days, but decreased rapidly thereafter. Notably, the severity of white matter injury (WMI), manifested by immunohistochemical staining for neurofilament SMI-32, was strongly correlated with the number of M1-like phagocytes. In vitro experiments using a conditioned medium transfer system confirmed that M1 microglia-conditioned media exacerbated oxygen glucose deprivation–induced oligodendrocyte death. Our results indicate that microglia/macrophages respond dynamically to TBI, experiencing a transient M2 phenotype followed by a shift to the M1 phenotype. The M1 phenotypic shift may propel WMI progression and represents a rational target for TBI treatment.


Stroke | 2008

Rapidly Increased Neuronal Mitochondrial Biogenesis After Hypoxic-Ischemic Brain Injury

Wei Yin; Armando P. Signore; Masanori Iwai; Guodong Cao; Yanqin Gao; Jun Chen

Background and Purpose— Mitochondrial biogenesis is regulated through the coordinated actions of both nuclear and mitochondrial genomes to ensure that the organelles are replenished on a regular basis. This highly regulated process has been well defined in skeletal and heart muscle, but its role in neuronal cells, particularly when under stress or injury, is not well understood. In this study, we report for the first time rapidly increased mitochondrial biogenesis in a rat model of neonatal hypoxic/ischemic brain injury (H-I). Methods— Postnatal day 7 rats were subjected to H-I induced by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. The relative amount of brain mitochondrial DNA (mtDNA) was measured semiquantitatively using long fragment PCR at various time points after H-I. HSP60 and COXIV proteins were detected by Western blot. Expression of three genes critical for the transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM), were examined by Western blot and RT-PCR. Results— Brain mtDNA content was markedly increased 6 hours after H-I, and continued to increase up to 24 hours after H-I. Paralleling the temporal change in mtDNA content, mitochondrial number and proteins HSP60 and COXIV, and citrate synthase activity were increased in neurons in the cortical infarct border zone after H-I. Moreover, cortical expression of NRF-1 and TFAM were increased 6 to 24 hours after H-I, whereas PGC-1 was not changed. Conclusions— Neonatal H-I brain injury rapidly induces mitochondrial biogenesis, which may constitute a novel component of the endogenous repair mechanisms of the brain.


Stroke | 2010

Enhanced Oligodendrogenesis and Recovery of Neurological Function by Erythropoietin After Neonatal Hypoxic/Ischemic Brain Injury

Masanori Iwai; R. Anne Stetler; Juan Xing; Xiaoming Hu; Yanqin Gao; Wenting Zhang; Jun Chen; Guodong Cao

Background and Purpose— Neuronal replacement has recently gained attention as a potential therapeutic target under ischemic conditions. However, the oligodendrogenic infrastructure is equally critical for restoration of brain function and is also sensitive to ischemic injury. Erythropoietin (EPO) is a neuroprotective molecule that stimulates neuronal replacement after neonatal hypoxia/ischemia (H/I) when delivered soon after the onset of reperfusion. Because EPO can improve recovery of neurological function in the absence of tissue protection, we hypothesize that EPO may improve neurological function via enhancement of white matter recovery after H/I. Thus, we sought to determine the effects of delayed administration of EPO on white matter injury and recovery of neurological function after neonatal H/I. Methods— EPO (1000 U/kg) was injected intraperitoneally at multiple time points beginning 48 hours after H/I in postnatal day 7 rats. The effects of EPO on oligodendrogenesis, white matter injury, and neurogenesis were evaluated using bromodeoxyuridine incorporation and cell-specific immunohistochemistry. Neurological function was assessed by sensorimotor behavioral tests. Results— Delayed administration of EPO was incapable of reducing brain volume loss but significantly increased oligodendrogenesis and maturation of oligodendrocytes and attenuated white matter injury after H/I. These effects occurred concurrently with enhanced neurogenesis. Delayed EPO treatment improved behavioral neurological outcomes 14 days after H/I injury. Conclusions— Our study demonstrates that delayed administration of EPO promotes oligodendrogenesis and attenuates white matter injury concurrently with increased neurogenesis. These effects likely contribute to the observed improvement in neurological functional outcomes.


Progress in Neurobiology | 2010

Heat shock proteins: cellular and molecular mechanisms in the central nervous system.

R. Anne Stetler; Yu Gan; Wenting Zhang; Anthony K.F. Liou; Yanqin Gao; Guodong Cao; Jun Chen

Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.


Journal of Biological Chemistry | 2007

Leptin Protects against 6-Hydroxydopamine-induced Dopaminergic Cell Death via Mitogen-activated Protein Kinase Signaling

Zhongfang Weng; Armando P. Signore; Yanqin Gao; Suping Wang; Feng Zhang; Teresa G. Hastings; Xiao Ming Yin; Jun Chen

The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.

Collaboration


Dive into the Yanqin Gao's collaboration.

Top Co-Authors

Avatar

Jun Chen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Hu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guodong Cao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Peiying Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yejie Shi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yu Gan

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge