Yanxia Lu
Southern Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanxia Lu.
Journal of Translational Medicine | 2015
Lin Zheng; Yuqin Zhang; Yan Liu; Min Zhou; Yanxia Lu; Li Yuan; Chao Zhang; Min Hong; Shuang Wang; Li X
BackgroundRadioresistance is a challenge in the treatment of patients with colorectal cancer (CRC). Individuals display different therapeutic responses to preoperative radiotherapy, and the need of targeted therapies is urgent. MicroRNAs (miRNAs) are involved in essential biological activities, including chemoresistance and radioresistance. Several research studies have indicated that miRNA played an important role in sensitizing cells to ionizing radiation (IR). MiR-106b, a member of the miR-106b-25 cluster, is frequently dysregulated in many human cancers, including CRC. However, the function of miR-106b in radioresistance is currently poorly understood.MethodsA series of in vitro and in vivo studies were performed to investigate the roles of miR-106b on cell radioresistance in CRC.ResultsWe found overexpression of miR-106b could induce resistance to IR in vitro and in vivo in SW620 cells. Correspondingly, knocking down miR-106b in SW480 yielded the opposite effect. In addition, overexpression of miR-106b could enhance the tumour-initiating cell capacity without or with IR condition, such as the colony sphere formation capacity and the upregulation of stemness-related genes (CD133, Sox2). We further identified PTEN and p21 as novel direct targets of miR-106b by using target prediction algorithms and a luciferase assay. Overexpression of miR-106b reduced the expression of PTEN and p21 and increased the expression of p-AKT, which is a downstream of PTEN. Restoring the expression of PTEN or p21 in stably miR-106b-overexpressed cells could rescue the effect of miR-106b on cell radioresistance. Together, the acquisition of tumour-initiating cell capacity endowed CRC cells with the potential of resistance to irradiation.ConclusionsThese observations illustrated that miR-106b could induce cell radioresistance by directly targeting PTEN and p21, this process was accompanied by tumour-initiating cell capacity enhancement, which is universally confirmed to be associated with radioresistance. Our data suggested that miR-106b at least partly induces cell radioresistance in CRC.
Cancer Letters | 2016
Zheying Zhang; Chang Zhou; Yaya Chang; Zuoyang Zhang; Yuhan Hu; Fan Zhang; Yanxia Lu; Lin Zheng; Wenjuan Zhang; Xiaomin Li; Li X
The abnormal expression of many long non-coding RNAs (lncRNAs) has been reported in the progression of various tumors, and these lncRNAs can be useful as diagnostic indicators and anti-tumor targets. Therefore, it is important to identify lncRNAs that can be used for the clinical prevention and treatment of colorectal cancer (CRC). Here, we report that cancer susceptibility candidate 11 (CASC11) was upregulated in CRC tissues; increased CASC11 expression in CRC was associated with tumor size, serosal invasion, lymph metastasis, and the tumor-node-metastasis (TNM) stage. Functional experiments showed that CASC11 can promote CRC cell proliferation and metastasis in vitro and in vivo. Furthermore, CASC11 can target heterogeneous ribonucleoprotein K (hnRNP-K) to activate WNT/β-catenin signaling in CRC cells. In addition, we found that c-Myc directly bound to the promoter regions of CASC11 and increased promoter histone acetylation to enhance CASC11 expression. Together, our findings indicate that the novel lncRNA CASC11 may serve as a candidate diagnostic biomarker and a promising therapeutic target for CRC.
PLOS ONE | 2013
Chang Zhou; Guobing Liu; Lijing Wang; Yanxia Lu; Li Yuan; Lin Zheng; Fang Chen; Fanli Peng; Li X
MicroRNAs (miRNAs) have been suggested to play a vital role in regulate tumor progression and invasion. However, the expression of miR-339-5p in colorectal cancer and its effects are not known. Here, we report that miR-339-5p is a tumor suppressor by regulating expression of PRL-1. In this study, we showed that downregulated miR-339-5p levels in colorectal cancer tissues and highly invasive CRC cell lines. Furthermore, enhancing the expression of miR-339-5p inhibited CRC cell growth, migration and invasion in vitro and suppressed tumor growth in vivo. We then screened and identified a novel miR-339-5p target, phosphatases of regenerating liver-1 1 (PRL-1), and it was further confirmed by luciferase assay. Overexpression of miR-339-5p would also reduce the expression of PRL-1 mRNA and protein. The reduced PRL-1 expression was associated with low expression of phosphorylated-extracellular signal-regulatedkinase1/2 (p-ERK1/2). Conversely, reduction of miR-339-5p by inhibitors in cells stimulated these phenotypes. In conclusion, our results demonstrate that miR-339-5p functions as a tumor suppressor and plays a role in inhibiting growth and metastasis of CRC cells through targeting PRL-1 and regulating p-ERK1/2 .These findings suggest that miR-339-5p may be useful as a new potential therapeutic target for CRC.
Clinical Cancer Research | 2014
Yanxia Lu; Li Yuan; Xiao-Lei Xue; Min Zhou; Yan Liu; Chao Zhang; Jing-Ping Li; Lin Zheng; Min Hong; Li X
Purpose: To elucidate a novel mechanism of miR-200c in the regulation of stemness, growth, and metastasis in colorectal carcinoma (CRC). Experimental Design: Quantitative reverse transcription PCR was used to quantify miR-200c expression in CRC cell lines and tissues. A luciferase assay was adopted for the target evaluation. The functional effects of miR-200c in CRC cells were assessed by its forced or inhibited expression using lentiviruses. Results: MiR-200c was statistically lower in CRC clinical specimens and highly metastatic CRC cell lines compared with their counterparts. Sox2 was validated as a target for miR-200c. The knockdown of miR-200c significantly enhanced proliferation, migration, and invasion in CRC cell lines, whereas the upregulation of miR-200c exhibited an inverse effect. Moreover, rescue of Sox2 expression could abolish the effect of the upregulation of miR-200c. In addition, the reduction of miR-200c increased the expression of CRC stem cell markers and the sphere-forming capacity of CRC cell lines. Further study has shown that miR-200c and Sox2 reciprocally control their expression through a feedback loop. MiR-200c suppresses the expression of Sox2 to block the activity of the phosphoinositide 3-kinase (PI3K)–AKT pathway. Conclusion: Our findings indicate that miR-200c regulates Sox2 expression through a feedback loop and is associated with CRC stemness, growth, and metastasis. Clin Cancer Res; 20(10); 2631–42. ©2014 AACR.
Clinical & Experimental Metastasis | 2012
Jinmin Sun; Zhang C; Guobing Liu; Hong Liu; Zhou C; Yanxia Lu; Chang Zhou; Li Yuan; Li X
Increased expression of CD133 (Prominin-1), an important cancer stem cell-associated marker, has been observed in the cancer stem cells of a variety of human and mouse cancers. However, no natural ligand of CD133 has yet been identified and little is known about its function. In the present study, LS-7 (amino acid sequence: LQNAPRS), a specific binding peptide targeting mouse CD133, was screened and identified for the first time by phage-displayed peptide library technology. The in vitro and in vivo affinity and specificity of LS-7 were determined, and MTT, adhesion, and migration assays were performed to evaluate the effects of LS-7 on the biological behaviors of cancer cells. To determine which signaling pathways are affected by LS-7, HMGB1, S-100A4, CXCR7, uPAR, AMFR, STAT3, and c-Met gene and protein expression were evaluated by RT-PCR and Western blot. Flow cytometry and immunofluorescence assays showed specific, high-affinity binding of the peptide to mCD133 in vitro. Confocal microscopy confirmed the co-localization of LS-7 positive cells and CD133-positive cells. Migration and wound-healing assays showed that LS-7 significantly inhibited the migration of colon and breast cancer cells in a concentration-dependent manner. In vivo experiments also confirmed the high specificity and affinity of LS-7 to mCD133. RT-PCR and Western blot showed that the expressions of only c-Met and STAT3 decreased obviously in colon and breast cancer cells exposed to LS-7. These findings may provide a novel tool for anti-motility and anti-metastasis strategies in cancer research and cancer stem cell therapy.
Oncotarget | 2016
Zuoyang Zhang; Yanxia Lu; Zheying Zhang; Yaya Chang; Lin Zheng; Li Yuan; Fan Zhang; Yuhan Hu; Wenjuan Zhang; Li X
Long non-coding RNAs (lncRNAs) are involved in kinds of human diseases, including colorectal cancer (CRC). TINCR, a 3.7 kb long non coding RNA, was associated with cell differentiation in keratinocyte and gastric cancer cells. However, little is known about the role of TINCR in regulation CRC progression. Here, we showed that lncRNA TINCR was associated with CRC proliferation and metastasis. TINCR was statistically downregulated in CRC tissues and metastatic CRC cell lines compared with their counterparts. TINCR was reversely correlated with CRC progression and promoted tumor cells growth, metastasis in vivo and in vitro. While overexpression of TINCR had opposite effect. In addition, we also found that TINCR specifically bound to EpCAM through RNA IP and RNA pull down assays. Loss of TINCR promoted hydrolysis of EpCAM and then released EpICD, subsequently, activated the Wnt/β-catenin pathway. Further studies shown that c-Myc repressed the expression of TINCR through repressing sp1 transcriptive activity, which established a positive feedback loop controlling c-Myc and TINCR expression. These findings elucidate that loss of TINCR expression promotes proliferation and metastasis in CRC and it could be considered as a potential cancer suppressor gene.
PLOS ONE | 2017
Zheying Zhang; Yaya Chang; Jianming Zhang; Yanxia Lu; Lin Zheng; Yuhan Hu; Fan Zhang; Xiaomin Li; Wenjuan Zhang; Li X; Zhiqian Zhang
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths and a major health problem. High mobility group box 3 (HMGB3), a member of the high-mobility group box (HMGB) family, was reported to be over-expressed in gastric carcinoma and bladder cancer. However, the function of HMGB3 in CRC remains unclear. Here, we found that HMGB3 was up-regulated in CRC at both mRNA and protein levels. qRT-PCR results showed that high expression of HMGB3 had positive correlation with serosal invasion, lymph metastasis, and tumor–node–metastasis (TNM) stage in CRC patient. Functional experiments showed that HMGB3 can promote CRC cells proliferation and migration in vitro. Moreover, we found HMGB3 can active WNT/β-catenin pathway to increase the expression level of c-Myc and MMP7. These results may be the reason for HMGB3 oncogene role in CRC. In summary, our data indicated that HMGB3 may serve as an oncoprotein and could be used as a potential prognostic marker in CRC.
Cellular Signalling | 2017
Fan Zhang; Yanxia Lu; Qing Chen; Hui-mei Zou; Jianming Zhang; Yuhan Hu; Xiaomin Li; Wenjuan Zhang; Wei Zhang; Chun Lin; Li X
Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.
The Journal of Pathology | 2018
Xiaomin Li; Jianjun Wang; Chao Zhang; Chun Lin; Jianming Zhang; Wei Zhang; Wenjuan Zhang; Yanxia Lu; Lin Zheng; Li X
Circular RNAs (circRNAs) are significantly dysregulated in various cancer types. However, the roles and mechanisms of circRNAs in cancer remain largely unknown. In this study, we demonstrated that a novel circRNA (circITGA7) and its linear host gene ITGA7 are both significantly downregulated in colorectal cancer (CRC) tissues and cell lines. These decreased expression levels correlated with CRC progression. Functional assays demonstrated that ectopic circITGA7 expression suppressed the growth and metastasis of CRC cells in vitro and in vivo. Knockdown of circITGA7 or ITGA7 promoted the proliferation and migration of CRC cells in vitro, and enhanced CRC growth in vivo. Mechanistically, by using RNA‐sequencing and KEGG enrichment analysis, we found that circITGA7 is a negative regulator of the Ras signalling pathway, and that ITGA7 is associated with cytokine‐related signalling pathways. In addition, circITGA7 binds to miR‐370‐3p to antagonise its suppression of neurofibromin 1, which is a well‐known negative regulator of the Ras pathway. Finally, circITGA7 upregulates the transcription of ITGA7 by suppressing RREB1 via the Ras pathway. In conclusion, our findings indicate a suppressor role of circITGA7 and ITGA7 in CRC, and reveal that circITGA7 inhibits the proliferation and metastasis of CRC cells by suppressing the Ras signalling pathway and promoting the transcription of ITGA7, suggesting that circITGA7 is a potential target for CRC treatment. Copyright
Oncotarget | 2017
Yuhan Hu; Qing Chen; Yanxia Lu; Jianming Zhang; Chun Lin; Fan Zhang; Wenjuan Zhang; Xiaomin Li; Wei Zhang; Li X
The progression of CRC is a multistep process involving several genetic changes or epigenetic modifications. NDN is a member of the MAGE family, encoding a protein that generally suppresses cell proliferation and acting as a transcriptional repressor. Immunohistochemical staining revealed that the expression of NDN was significantly down-regulated in CRC tissues compared with normal tissues and the down-regulation of NDN in CRC could reflect the hypermethylation of the NDN promoter. Treatment of the CRC cell line SW480 with the demethylating agent 5-Aza-CdR restored the NDN expression level. The down-regulation of NDN was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. The inhibition of NDN promoted CRC cell proliferation by enriching cells in the S phase. Furthermore, we observed that NDN binds to the GN box in the promoter of LRP6 to attenuate LRP6 transcription and inhibit the Wnt signaling pathway in CRC. In conclusion, our study revealed that the hypermethylation of NDN promotes cell proliferation by activating the Wnt signaling pathway through directly increasing the transcription of LRP6 in CRC. These findings might provide a new theoretical basis for the pathogenesis of CRC and facilitate the development of new therapeutic strategies against CRC.