Yanzheng Gao
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanzheng Gao.
Bioresource Technology | 2010
Yanzheng Gao; Lili Ren; Wanting Ling; Shuaishuai Gong; Bingqing Sun; Yi Zhang
A batch experiment was conducted to evaluate the impact of root exudates on the desorption of phenanthrene and pyrene in soils. Rhizosphere model systems where soils are given artificial root exudates (AREs) have been utilized. ARE addition markedly influenced the desorption of phenanthrene and pyrene in soils, and the effects depended on ARE concentration, aging time, and soil properties. The desorption of phenanthrene and pyrene increased with ARE concentration of 0-1000 mmol/L. Soils with higher soil organic matter content (f(oc)) had lower desorption than soils with lower f(oc) values, at the same ARE concentration. The aging of phenanthrene and pyrene in soils markedly reduced the desorption of both compounds. The increment of phenanthrene and pyrene desorption was always higher with the addition of citric and oxalic acid than with the same concentration of AREs, indicating that the effects of AREs on desorption may be dominantly due to the organic acids.
Journal of Hazardous Materials | 2011
Yanzheng Gao; Qiuling Li; Wanting Ling; Xuezhu Zhu
An available remediation technique--arbuscular mycorrhizal phytoremediation (AMPR)--is further proposed for soils contaminated with phenanthrene and pyrene as representative polycyclic aromatic hydrocarbons (PAHs) utilizing a greenhouse pot experiment. The initial concentrations of phenanthrene and/or pyrene in soils were 103 mg kg(-1) and 74 mg kg(-1), respectively. The host plant was alfalfa (Medicago sativa L.), and the experimental arbuscular mycorrhizal fungi (AMF) were Glomus mosseae and G. etunicatum. More than 98.6% and 88.1% of phenanthrene and pyrene were degraded after 70 days in soils with AMPR. Use of multiple mycorrhizal species significantly promoted degradation of PAHs in soils. The co-contaminant (pyrene) present clearly inhibited the degradation of a single PAH (phenanthrene) in soil. Mycorrhizal colonization caused increased accumulation of PAHs in plant roots but a decrease in shoot. However, plant uptake contributed negligibly to PAH dissipation in AMPR, and plant accumulated PAHs amounted to less than 3.24% of total PAH degradation in mycorrhizal soils. In contrast, the optimized microbiota in mycorrhizal association was responsible for PAH degradation in AMPR. The high rate of PAH dissipation in mycorrhizal soils, the evident promotion of PAH degradation by AM colonization, and the healthy plant growth suggest encouraging opportunities for AMPR of PAH-contaminated soils.
BMC Plant Biology | 2010
Fuxing Kang; Dongsheng Chen; Yanzheng Gao; Yi Zhang
BackgroundBecause of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency.ResultsPyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene.ConclusionsTranspiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in root cells.
Journal of Hazardous Materials | 2009
Yanzheng Gao; Yuechun Zeng; Qing Shen; Wanting Ling; Jin Han
Understanding the forms and availabilities of polycylic aromatic hydrocarbons (PAHs) would have considerable benefits for their risk assessment, and is of crucial importance for food security and remediation strategies in contaminated sites. In this work, the forms of six PAHs (fluorene, phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene) in soils were separated into three fractions including a desorbing fraction, a non-desorbing fraction, and a bound residual fraction using a sequential extraction mass balance approach. The desorbing and non-desorbing fractions were extracted with hydroxypropyl-beta-cyclodextrin (HPCD) and dichloromethane:acetone (1:1, vol/vol), respectively. The desorbing and non-desorbing fractions always dominated the total PAH content in soils. The proportion of bound PAH residue in nonsterilized soils was small (<16%), and even smaller (4.5%) in sterilized soils. The concentrations of the desorbing fraction of PAHs as well as the percentage of this fraction to the total PAH content in soils clearly decreased in 0-16 weeks, which may be due to microbial biodegradation and its transfer to other fractions in soils. The concentrations of the non-desorbing PAH fractions increased in sterilized soils, while remaining nearly constant or decreasing to some extent in nonsterilized soils after 16 weeks. The proportion of non-desorbing PAH fractions significantly increased in 16 week-incubation, and this proportion was positively correlated with the molecular weights of the PAHs tested, indicating that larger PAHs are more likely to be present in non-desorbing fractions. The bound PAH residue tended to increase at first and decrease thereafter over the 0-16-week period, and microbes played an important role in the formation of bound residue.
Chemosphere | 2016
Kai Sun; Qi Luo; Yanzheng Gao; Qingguo Huang
The widespread presence of estrogens in natural waters poses potential threats to the aquatic organisms and human health. It is known that estrogens undergo enzyme-catalyzed oxidative coupling (ECOC) reactions, which may impact their environmental fate and can be used in wastewater treatment to remove estrogens, but little information is available on how natural organic matter (NOM) may influence 17β-estradiol (E2) transformation in ECOC processes. A series of experiments were conducted to examine the transformation of E2 in aqueous solution containing humic acid (HA) as model NOM by laccase-mediated ECOC reactions. The impact of HA on the reaction behaviors and product distribution is systematically characterized. The presence of HA inhibited the extent of E2 self-coupling in laccase-mediated systems, while promoted cross-coupling between E2 and HA. Reconfiguration of humic molecules was also observed and characterized by changes in absorbance at 275 nm and the ratios between A250 nm/A365 nm. In particular, experiments were conducted with un-labeled E2 mixed with (13)C3-labeled E2 at a set ratio, with the products probed using high-resolution mass spectrometry (HRMS). The high m/z accuracy of HRMS enabled the use of isotope ratio as a tracer to identify possible cross-coupling products between E2 and HA. Such a method combining HRMS and isotope labeling provides a novel means for identification of products in a reaction system involving NOM or other complex matrices. These findings provide a basis for optimization of ECOC reactions for estrogen removal, and also help to understand the environmental transformation of estrogens.
Environmental Pollution | 2017
Kai Sun; Fuxing Kang; Michael Gatheru Waigi; Yanzheng Gao; Qingguo Huang
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is found extensively in natural aquatic environments. Enzyme-catalyzed oxidative coupling reactions (ECOCRs) can be used to remove TCS in aqueous solution, but there is limited information available to indicate how metal cations (MCs) and natural organic matter (NOM) influence the environmental fate of TCS during laccase-mediated ECOCRs. In this study, we demonstrated that the naturally occurring laccase from Pleurotus ostreatus was effective in removing TCS during ECOCRs, and the oligomerization of TCS was identified as the dominant reaction pathway by high-resolution mass spectrometry (HRMS). The growth inhibition studies of green algae (Chlamydomonas reinhardtii and Scenedesmus obliquus) proved that laccase-mediated ECOCRs could effectively reduce the toxicity of TCS. The presence of dissolved MCs (Mn2+, Al3+, Ca2+, Cu2+, and Fe2+ ions) influenced the removal and transformation of TCS via different mechanisms. Additionally, the transformation of TCS in systems with NOM derived from humic acid (HA) was hindered, and the apparent pseudo first-order kinetics rate constants (k) for TCS decreased as the HA concentration increased, which likely corresponded to the combined effect of both noncovalent (sorption) and covalent binding between TCS and humic molecules. Our results provide a novel insight into the fate and transformation of TCS by laccase-mediated ECOCRs in natural aquatic environments in the presence of MCs and NOM.
Environmental Pollution | 2018
Zhao Ma; Juan Liu; Richard P. Dick; Hui Li; Di Shen; Yanzheng Gao; Michael Gatheru Waigi; Wanting Ling
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L-1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L-1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L-1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Soil Biology & Biochemistry | 2009
Wanting Ling; Lili Ren; Yanzheng Gao; Xuezhu Zhu; Bingqing Sun
Chemosphere | 2006
Yanzheng Gao; Wanting Ling; Ming H. Wong
Chemosphere | 2006
Yanzheng Gao; Wei Xiong; Wanting Ling; Jianming Xu