Yaodong Chen
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaodong Chen.
Biochemistry | 2012
Yaodong Chen; Sara L. Milam; Harold P. Erickson
We have investigated the inhibition by SulA of the assembly of Escherichia coli FtsZ. Using quantitative GTPase and fluorescence assays, we found that SulA inhibition resulted in an increase in the apparent critical concentration for FtsZ assembly. The increase in apparent critical concentration was always less than the total amount of SulA added, suggesting that the association of SulA and FtsZ was of modest affinity. Isothermal titration calorimetry gave a value of 0.78 μM for the dissociation constant of the FtsZ-SulA complex, similar in magnitude to the 0.72 μM critical concentration of FtsZ protofilament assembly at steady state. We modeled the reaction as an equilibrium competition between (a) FtsZ subunits assembling onto protofilaments or (b) binding SulA. When FtsZ was assembled in GMPCPP or in EDTA, the inhibition by SulA was reduced. The reduced inhibition could be explained by a 3- and 10-fold weaker binding of SulA to FtsZ. The mutant D212G, which has no GTPase activity and therefore minimal subunit cycling, was shown here to assemble one-stranded protofilaments, and the assembly was blocked by SulA. We also assayed the SulA and FtsZ proteins from Pseudomonas. The SulA inhibition was stronger than with the E. coli proteins, and the model indicated a 5-fold higher affinity of Pseudomonas SulA for FtsZ.
Journal of Biological Chemistry | 2007
Yaodong Chen; David E. Anderson; Malini Rajagopalan; Harold P. Erickson
We have investigated the assembly of FtsZ from Mycobacterium tuberculosis (MtbFtsZ). Electron microscopy confirmed the previous observation that MtbFtsZ assembled into long, two-stranded filaments at pH 6.5. However, we found that assembly at pH 7.2 or 7.7 produced predominantly short, one-stranded protofilaments, similar to those of Escherichia coli FtsZ (EcFtsZ). Near pH 7, which is close to the pH of M. tuberculosis cytoplasm, MtbFtsZ formed a mixture of single- and two-stranded filaments. We developed a fluorescence resonance energy transfer assay to measure the kinetics of initial assembly and the dynamic properties at steady state. Assembly of MtbFtsZ reached a plateau after 60–100 s, about 10 times slower than EcFtsZ. The initial assembly kinetics were similar at pH 6.5 and 7.7, despite the striking difference in the polymer structures. Both were fit with a cooperative assembly mechanism involving a weak dimer nucleus, similar to EcFtsZ but with slower kinetics. Subunit turnover and GTPase at steady state were also about 10 times slower for MtbFtsZ than for EcFtsZ. Specifically, the half-time for subunit turnover in vitro at pH 7.7 was 42 s for MtbFtsZ compared with 5.5 s for EcFtsZ. Photobleaching studies in vivo showed a range of turnover half-times with an average of 25 s for MtbFtsZ as compared with 9 s for EcFtsZ.
Biochemistry | 2009
Yaodong Chen; Harold P. Erickson
We have measured three aspects of FtsZ filament dynamics at steady state: rates of GTP hydrolysis, subunit exchange between protofilaments, and disassembly induced by dilution or excess GDP. All three reactions were slowed with an increase in the potassium concentration from 100 to 500 mM, via replacement of potassium with rubidium, or with an increase in the magnesium concentration from 5 to 20 mM. Electron microscopy showed that the polymers assembled under the conditions of fastest assembly were predominantly short, one-stranded protofilaments, whereas under conditions of slower dynamics, the protofilaments tended to associate into long, thin bundles. We suggest that exchange of subunits between protofilaments at steady state involves two separate mechanisms: (1) fragmentation or dissociation of subunits from protofilament ends following GTP hydrolysis and (2) reversible association and dissociation of subunits from protofilament ends independent of hydrolysis. Exchange of nucleotides on these recycling subunits could give the appearance of exchange directly into the polymer. Several of our observations suggest that exchange of nucleotide can take place on these recycling subunits, but not directly into the FtsZ polymer. Annealing of protofilaments was demonstrated for the L68W mutant in EDTA buffer but not in Mg buffer, where rapid cycling of subunits may obscure the effect of annealing. We also reinvestigated the nucleotide composition of FtsZ polymers at steady state. We found that the GDP:GTP ratio was 50:50 for concentrations of GTP >100 microM, significantly higher than the 20:80 ratio previously reported at 20 microM GTP.
Journal of Biological Chemistry | 2008
Yaodong Chen; Harold P. Erickson
Proteins with a weak sequence similarity to tubulin and FtsZ are expressed from large plasmids of Bacillus anthracis and Bacillus thuringiensis and are probably involved in plasmid segregation. Previously designated RepX and TubZ, we designate them here as TubZ-Ba and TubZ-Bt. We have expressed and purified the proteins for in vitro studies. TubZ-Ba and TubZ-Bt share only 21% amino acid identity, but they have remarkably similar biochemical properties. They both assemble into two-stranded filaments and larger bundles above a critical concentration, and they hydrolyze GTP at a very high rate, ∼20 GTP min–1 TubZ–1. Assembly is also supported by GTPγS. A tiny amount of GTPγS stabilizes polymers assembled in GTP and inhibits the GTPase by a mechanism involving cooperativity. The nucleotide in the polymers is almost 100% GDP, which is similar to microtubules but very different from the 20–30% GDP in FtsZ polymers. This suggests that the TubZ polymers have a capping mechanism that may be related to the GTP cap that produces dynamic instability of microtubules.
Biochemistry | 2011
Yaodong Chen; Harold P. Erickson
E. coli FtsZ has no native tryptophan. We showed previously that the mutant FtsZ L68W gave a 2.5-fold increase in trp fluorescence when assembly was induced by GTP. L68 is probably buried in the protofilament interface upon assembly, causing the fluorescence increase. In the present study we introduced trp residues at several other locations and examined them for assembly-induced fluorescence changes. L189W, located on helix H7 and buried between the N- and C-terminal subdomains, showed a large fluorescence increase, comparable to L68W. This may reflect a shift or rotation of the two subdomains relative to each other. L160W showed a smaller increase in fluorescence, and Y222W a decrease in fluorescence, upon assembly. These two are located on the surface of the N and C subdomains, near the domain boundary. The changes in fluorescence may reflect movements of the domains or of nearby side chains. We prepared a double mutant Y222W/S151C and coupled ATTO-655 to the cys. The Cα of trp in the C-terminal subdomain was 10 Å away from that of the cys in the N-terminal subdomain, permitting the ATTO to make van der Waals contact with the trp. The ATTO fluorescence showed strong tryptophan-induced quenching. The quenching was reduced following assembly, consistent with a movement apart of the two subdomains. Movements of one to several angstroms are probably sufficient to account for the changes in trp fluorescence and trp-induced quenching of ATTO. Assembly in GDP plus DEAE dextran produces tubular polymers that are related to the highly curved, mini-ring conformation. No change in trp fluorescence was observed upon assembly of these tubes, suggesting that the mini-ring conformation is the same as that of a relaxed, monomeric FtsZ.
Scientific Reports | 2017
Yaodong Chen; Haiyan Huang; Masaki Osawa; Harold P. Erickson
The cytokinetic division ring of Escherichia coli comprises filaments of FtsZ tethered to the membrane by FtsA and ZipA. Previous results suggested that ZipA is a Z-ring stabilizer, since in vitro experiments it is shown that ZipA enhanced FtsZ assembly and caused the filaments to bundles. However, this function of ZipA has been challenged by recent studies. First, ZipA-induced FtsZ bundling was not significant at pH greater than 7. Second, some FtsA mutants, such as FtsA* were able to bypass the need of ZipA. We reinvestigated the interaction of FtsZ with ZipA in vitro. We found that ZipA not only stabilized and bundled straight filaments of FtsZ-GTP, but also stabilized the highly curved filaments and miniring structures formed by FtsZ-GDP. FtsA* had a similar stabilization of FtsZ-GDP minirings. Our results suggest that ZipA and FtsA* may contribute to constriction by stabilizing this miniring conformation.
Journal of Biological Chemistry | 2017
Yaodong Chen; Katie Porter; Masaki Osawa; Anne Marie Augustus; Sara L. Milam; Chandra P. Joshi; Katherine W. Osteryoung; Harold P. Erickson
FtsZ is a homolog of eukaryotic tubulin and is present in almost all bacteria and many archaea, where it is the major cytoskeletal protein in the Z ring, required for cell division. Unlike some other cell organelles of prokaryotic origin, chloroplasts have retained FtsZ as an essential component of the division machinery. However, chloroplast FtsZs have been challenging to study because they are difficult to express and purify. To this end, we have used a FATT tag expression system to produce as soluble proteins the two chloroplast FtsZs from Galdieria sulphuraria, a thermophilic red alga. GsFtsZA and GsFtsZB assembled individually in the presence of GTP, forming large bundles of protofilaments. GsFtsZA also assembled in the presence of GDP, the first member of the FtsZ/tubulin superfamily to do so. Mixtures of GsFtsZA and GsFtsZB assembled protofilament bundles and hydrolyzed GTP at a rate approximately equal to the sum of their individual rates, suggesting a random co-assembly. GsFtsZA assembly by itself in limiting GTP gave polymers that remained stable for a prolonged time. However, when GsFtsZB was added, the co-polymers disassembled with enhanced kinetics, suggesting that the GsFtsZB regulates and enhances disassembly dynamics. GsFtsZA-mts (where mts is a membrane-targeting amphipathic helix) formed Z ring-like helices when expressed in Escherichia coli. Co-expression of GsFtsZB (without an mts) gave co-assembly of both into similar helices. In summary, we provide biochemical evidence that GsFtsZA assembles as the primary scaffold of the chloroplast Z ring and that GsFtsZB co-assembly enhances polymer disassembly and dynamics.
Journal of Biological Chemistry | 2005
Yaodong Chen; Harold P. Erickson
Biophysical Journal | 2005
Yaodong Chen; Keith Bjornson; Sambra D. Redick; Harold P. Erickson
Journal of Biological Chemistry | 2018
Harold P. Erickson; Haiyan Huang; Ping Wang; Li Bian; Masaki Osawa; Yaodong Chen