Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaofang Zhang is active.

Publication


Featured researches published by Yaofang Zhang.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens

Steven M. Damo; Thomas E. Kehl-Fie; Norie Sugitani; Marilyn E. Holt; Subodh Rathi; Wesley J. Murphy; Yaofang Zhang; Christine Betz; Laura Hench; Günter Fritz; Eric P. Skaar; Walter J. Chazin

The S100A8/S100A9 heterodimer calprotectin (CP) functions in the host response to pathogens through a mechanism termed “nutritional immunity.” CP binds Mn2+ and Zn2+ with high affinity and starves bacteria of these essential nutrients. Combining biophysical, structural, and microbiological analysis, we identified the molecular basis of Mn2+ sequestration. The asymmetry of the CP heterodimer creates a single Mn2+-binding site from six histidine residues, which distinguishes CP from all other Mn2+-binding proteins. Analysis of CP mutants with altered metal-binding properties revealed that, despite both Mn2+ and Zn2+ being essential metals, maximal growth inhibition of multiple bacterial pathogens requires Mn2+ sequestration. These data establish the importance of Mn2+ sequestration in defense against infection, explain the broad-spectrum antimicrobial activity of CP relative to other S100 proteins, and clarify the impact of metal depletion on the innate immune response to infection.


PLOS Pathogens | 2012

Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration

M. Indriati Hood; Brittany L. Mortensen; Jessica L. Moore; Yaofang Zhang; Thomas E. Kehl-Fie; Norie Sugitani; Walter J. Chazin; Richard M. Caprioli; Eric P. Skaar

Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP)-mediated chelation of manganese (Mn) and zinc (Zn) in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.


Infection and Immunity | 2013

MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese

Thomas E. Kehl-Fie; Yaofang Zhang; Jessica L. Moore; Allison J. Farrand; M. Indriati Hood; Subodh Rathi; Walter J. Chazin; Richard M. Caprioli; Eric P. Skaar

ABSTRACT During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection.


Mbio | 2013

Two Heme-Dependent Terminal Oxidases Power Staphylococcus aureus Organ-Specific Colonization of the Vertebrate Host

Neal D. Hammer; Michelle L. Reniere; James E. Cassat; Yaofang Zhang; Amanda O. Hirsch; M. Indriati Hood; Eric P. Skaar

ABSTRACT Staphylococcus aureus is a significant cause of infections worldwide and is able to utilize aerobic respiration, anaerobic respiration, or fermentation as the means by which it generates the energy needed for proliferation. Aerobic respiration is supported by heme-dependent terminal oxidases that catalyze the final step of aerobic respiration, the reduction of O2 to H2O. An inability to respire forces bacteria to generate energy via fermentation, resulting in reduced growth. Elucidating the roles of these energy-generating pathways during colonization of the host could uncover attractive therapeutic targets. Consistent with this idea, we report that inhibiting aerobic respiration by inactivating heme biosynthesis significantly impairs the ability of S. aureus to colonize the host. Two heme-dependent terminal oxidases support aerobic respiration of S. aureus, implying that the staphylococcal respiratory chain is branched. Systemic infection with S. aureus mutants limited to a single terminal oxidase results in an organ-specific colonization defect, resulting in reduced bacterial burdens in either the liver or the heart. Finally, inhibition of aerobic respiration can be achieved by exposing S. aureus to noniron heme analogues. These data provide evidence that aerobic respiration plays a major role in S. aureus colonization of the host and that this energy-generating process is a viable therapeutic target. IMPORTANCE Staphylococcus aureus poses a significant threat to public health as antibiotic-resistant isolates of this pathogen continue to emerge. Our understanding of the energy-generating processes that allow S. aureus to proliferate within the host is incomplete. Host-derived heme is the preferred source of nutrient iron during infection; however, S. aureus can synthesize heme de novo and use it to facilitate aerobic respiration. We demonstrate that S. aureus heme biosynthesis powers a branched aerobic respiratory chain composed of two terminal oxidases. The importance of having two terminal oxidases is demonstrated by the finding that each plays an essential role in colonizing distinct organs during systemic infection. Additionally, this process can be targeted by small-molecule heme analogues called noniron protoporphyrins. This study serves to demonstrate that heme biosynthesis supports two terminal oxidases that are required for aerobic respiration and are also essential for S. aureus pathogenesis. Staphylococcus aureus poses a significant threat to public health as antibiotic-resistant isolates of this pathogen continue to emerge. Our understanding of the energy-generating processes that allow S. aureus to proliferate within the host is incomplete. Host-derived heme is the preferred source of nutrient iron during infection; however, S. aureus can synthesize heme de novo and use it to facilitate aerobic respiration. We demonstrate that S. aureus heme biosynthesis powers a branched aerobic respiratory chain composed of two terminal oxidases. The importance of having two terminal oxidases is demonstrated by the finding that each plays an essential role in colonizing distinct organs during systemic infection. Additionally, this process can be targeted by small-molecule heme analogues called noniron protoporphyrins. This study serves to demonstrate that heme biosynthesis supports two terminal oxidases that are required for aerobic respiration and are also essential for S. aureus pathogenesis.


Nature Medicine | 2016

Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection

Joseph P Zackular; Jessica L. Moore; Ashley T Jordan; Lillian J. Juttukonda; Michael J. Noto; Maribeth R. Nicholson; Jonathan D Crews; Matthew W. Semler; Yaofang Zhang; Lorraine B. Ware; M. Kay Washington; Walter J. Chazin; Richard M. Caprioli; Eric P. Skaar

Clostridium difficile is the most commonly reported nosocomial pathogen in the United States and is an urgent public health concern worldwide. Over the past decade, incidence, severity and costs associated with C. difficile infection (CDI) have increased dramatically. CDI is most commonly initiated by antibiotic-mediated disruption of the gut microbiota; however, non-antibiotic-associated CDI cases are well documented and on the rise. This suggests that unexplored environmental, nutrient and host factors probably influence CDI. Here we show that excess dietary zinc (Zn) substantially alters the gut microbiota and, in turn, reduces the minimum amount of antibiotics needed to confer susceptibility to CDI. In mice colonized with C. difficile, excess dietary Zn severely exacerbated C. difficile–associated disease by increasing toxin activity and altering the host immune response. In addition, we show that the Zn-binding S100 protein calprotectin has antimicrobial effects against C. difficile and is an essential component of the innate immune response to CDI. Taken together, these data suggest that nutrient Zn levels have a key role in determining susceptibility to CDI and severity of disease, and that calprotectin-mediated metal limitation is an important factor in the host immune response to C. difficile.


Thorax | 2014

Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia

Ahmed Achouiti; Thomas Vogl; Henrik Endeman; Brittany L. Mortensen; Pierre-François Laterre; Xavier Wittebole; Marieke A.D. van Zoelen; Yaofang Zhang; Jacobien J. Hoogerwerf; Sandrine Florquin; Marcus J. Schultz; Jan C. Grutters; Douwe H. Biesma; J. Roth; Eric P. Skaar; Cornelis van 't Veer; Alex F. de Vos; Tom van der Poll

Background Streptococcus pneumoniae is the most commonly identified pathogen in community-acquired pneumonia (CAP). Myeloid-related protein (MRP) 8/14 is a major component of neutrophils that is released upon infection or injury. MRP8/14 is essential for protective immunity during infection by a variety of micro-organisms through its capacity to chelate manganese and zinc. Here, we aimed to determine the role of MRP8/14 in pneumococcal pneumonia. Methods MRP8/14 was determined in bronchoalveolar lavage fluid (BALF) and serum of CAP patients, in lung tissue of patients who had succumbed to pneumococcal pneumonia, and in BALF of healthy subjects challenged with lipoteichoic acid (a component of the gram-positive bacterial cell wall) via the airways. Pneumonia was induced in MRP14 deficient and normal wildtype mice. The effect of MRP8/14 on S. pneumoniae growth was studied in vitro. Results CAP patients displayed high MRP8/14 levels in BALF, lung tissue and serum. Healthy subjects challenged with lipoteichoic acid demonstrated elevated MRP8/14 in BALF. Likewise, mice with pneumococcal pneumonia had high MRP8/14 levels in lungs and the circulation. MRP14 deficiency, however, was associated with reduced bacterial growth and lethality, in the absence of notable effects on the inflammatory response. High zinc levels strongly inhibited growth of S. pneumoniae in vitro, which was partially reversed by MRP8/14. Conclusions In sharp contrast to its previously reported host-protective role in several infections, the present results reveal that in a model of CAP, MRP8/14 is misused by S. pneumoniae, facilitating bacterial growth by attenuating zinc toxicity toward the pathogen.


The Journal of Infectious Diseases | 2014

Transferrin Iron Starvation Therapy for Lethal Bacterial and Fungal Infections

Lin Lin; Paul Pantapalangkoor; Brandon Tan; Kevin W. Bruhn; Tiffany Ho; Travis B. Nielsen; Eric P. Skaar; Yaofang Zhang; Ruipeng Bai; Amy Wang; Terence M. Doherty; Brad Spellberg

New strategies to treat antibiotic-resistant infections are urgently needed. We serendipitously discovered that stem cell conditioned media possessed broad antimicrobial properties. Biochemical, functional, and genetic assays confirmed that the antimicrobial effect was mediated by supra-physiological concentrations of transferrin. Human transferrin inhibited growth of gram-positive (Staphylococcus aureus), gram-negative (Acinetobacter baumannii), and fungal (Candida albicans) pathogens by sequestering iron and disrupting membrane potential. Serial passage in subtherapeutic transferrin concentrations resulted in no emergence of resistance. Infected mice treated with intravenous human transferrin had improved survival and reduced microbial burden. Finally, adjunctive transferrin reduced the emergence of rifampin-resistant mutants of S. aureus in infected mice treated with rifampin. Transferrin is a promising, novel antimicrobial agent that merits clinical investigation. These results provide proof of principle that bacterial infections can be treated in vivo by attacking host targets (ie, trace metal availability) rather than microbial targets.


Nature Communications | 2016

The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction

Catherine A. Wakeman; Jessica L. Moore; Michael J. Noto; Yaofang Zhang; Marc D. Singleton; Boone M. Prentice; Benjamin A. Gilston; Ryan S. Doster; Jennifer A. Gaddy; Walter J. Chazin; Richard M. Caprioli; Eric P. Skaar

Microorganisms form biofilms containing differentiated cell populations. To determine factors driving differentiation, we herein visualize protein and metal distributions within Pseudomonas aeruginosa biofilms using imaging mass spectrometry. These in vitro experiments reveal correlations between differential protein distribution and metal abundance. Notably, zinc- and manganese-depleted portions of the biofilm repress the production of anti-staphylococcal molecules. Exposure to calprotectin (a host protein known to sequester metal ions at infectious foci) recapitulates responses occurring within metal-deplete portions of the biofilm and promotes interaction between P. aeruginosa and Staphylococcus aureus. Consistent with these results, the presence of calprotectin promotes co-colonization of the murine lung, and polymicrobial communities are found to co-exist in calprotectin-enriched airspaces of a cystic fibrosis lung explant. These findings, which demonstrate that metal fluctuations are a driving force of microbial community structure, have clinical implications because of the frequent occurrence of P. aeruginosa and S. aureus co-infections.


Journal of Bacteriology | 2014

Differential Activation of Staphylococcus aureus Heme Detoxification Machinery by Heme Analogues

Catherine A. Wakeman; Devin L. Stauff; Yaofang Zhang; Eric P. Skaar

The reactive nature of heme enables its use as an enzymatic cofactor while rendering excess heme toxic. The importance of heme detoxification machinery is highlighted by the presence of various types of these homeostatic systems in Gram-positive and Gram-negative microorganisms. A number of pathogens possess orthologs of the HssRS/HrtAB heme detoxification system, underscoring a potential role this system plays in the survival of bacteria in heme-rich environments such as the vertebrate host. In this work, we sought to determine the role of this system in protection against metalloporphyrin heme analogues identified by previous studies as antimicrobial agents. Our findings demonstrate that only toxic metalloporphyrins maximally activate expression of the Staphylococcus aureus heme detoxification system, suggesting that the sensing mechanism of HssRS might require a component of the associated toxicity rather than or in addition to the metalloporphyrin itself. We further establish that only a subset of toxic metalloporphyrins elicit the oxidative damage previously shown to be a significant component of heme toxicity whereas all toxic noniron metalloporphyrins inhibit bacterial respiration. Finally, we demonstrate that, despite the fact that toxic metalloporphyrin treatment induces expression of S. aureus heme detoxification machinery, the HrtAB heme export pump is unable to detoxify most of these molecules. The ineffectiveness of HrtAB against toxic heme analogues provides an explanation for their increased antimicrobial activity relative to heme. Additionally, these studies define the specificity of HssRS/HrtAB, which may provide future insight into the biochemical mechanisms of these systems.


Proceedings of the National Academy of Sciences of the United States of America | 2017

In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection

Allegra T. Aron; Marie C. Heffern; Zachery R. Lonergan; Mark N. Vander Wal; Brian R. Blank; Benjamin Spangler; Yaofang Zhang; Hyo Min Park; Andreas Stahl; Adam R. Renslo; Eric P. Skaar; Christopher J. Chang

Significance Iron is a required metal nutrient for life, and its altered homeostasis is associated with a number of diseases. We present a bioluminescent reporter for visualizing iron pools in living animals, where iron-dependent uncaging of d-aminoluciferin enables sensitive and selective imaging of ferrous over ferric forms of iron in luciferase-expressing cell and mouse models. Application of this technology to a model of systemic bacterial infection reveals elevation of iron in infected tissues that accompany markers for increased iron acquisition and retention. These data establish the ability to assess iron status in living animals and provide a unique platform for studying its contributions to stages of health, aging, and disease. Iron is an essential metal for all organisms, yet disruption of its homeostasis, particularly in labile forms that can contribute to oxidative stress, is connected to diseases ranging from infection to cancer to neurodegeneration. Iron deficiency is also among the most common nutritional deficiencies worldwide. To advance studies of iron in healthy and disease states, we now report the synthesis and characterization of iron-caged luciferin-1 (ICL-1), a bioluminescent probe that enables longitudinal monitoring of labile iron pools (LIPs) in living animals. ICL-1 utilizes a bioinspired endoperoxide trigger to release d-aminoluciferin for selective reactivity-based detection of Fe2+ with metal and oxidation state specificity. The probe can detect physiological changes in labile Fe2+ levels in live cells and mice experiencing iron deficiency or overload. Application of ICL-1 in a model of systemic bacterial infection reveals increased iron accumulation in infected tissues that accompany transcriptional changes consistent with elevations in both iron acquisition and retention. The ability to assess iron status in living animals provides a powerful technology for studying the contributions of iron metabolism to physiology and pathology.

Collaboration


Dive into the Yaofang Zhang's collaboration.

Top Co-Authors

Avatar

Eric P. Skaar

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine A. Wakeman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

James E. Cassat

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge