Yaokun Xia
Fujian Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaokun Xia.
Biosensors and Bioelectronics | 2016
Jing Zhang; Dongzhi Wu; Shuxian Cai; Mei Chen; Yaokun Xia; Fang Wu; Jinghua Chen
An immobilization-free electrochemical impedance biosensor for microRNA detection was developed in this work, which was based on both the duplex-specific nuclease assisted target recycling (DSNATR) and capture probes (Cps) enriched from the solution to electrode surface via magnetic beads (MBs). In the absence of miR-21, Cps cannot be hydrolyzed due to the low activity of duplex-specific nuclease (DSN) against ssDNA. Therefore, the intact Cps could be attached to the surface of magnetic glass carbon electrode (MGCE), resulting in a compact negatively charged layer as well as a large charge-transfer resistance. While in the presence of miR-21, it hybridized with Cp to form a DNA-RNA heteroduplex. Due to the considerable cleavage preference for DNA in DNA-RNA hybrids, DSN hydrolyzed the target-binding part of the Cp while liberating the intact miR-21 to hybridize with a new Cp and initiate the second cycle of hydrolysis. In this way, a single miR-21 was able to trigger the permanent hydrolysis of multiple Cps. Finally, all Cps were digested. Thus, the negatively charged layer could not be formed, resulting in a small charge-transfer resistance. By employing the above strategy, the proposed biosensor achieved ultrahigh sensitivity toward miR-21 with a detection limit of 60aM. Meanwhile, the method showed little cross-hybridization among the closely related miRNA family members even at the single-base-mismatched level. Successful attempts were made in applying the approach to detect miR-21 in human serum samples of breast cancer patients.
Biosensors and Bioelectronics | 2016
Shuxian Cai; Mei Chen; Mengmeng Liu; Wenhui He; Zhijing Liu; Dongzhi Wu; Yaokun Xia; Huang-Hao Yang; Jinghua Chen
Herein, a signal magnification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker is constructed. Theoretically, just one DNA walker, released by target cell-responsive reaction, can automatically cleave all D-RNA (a chimeric DNA/RNA oligonucleotide with a cleavage point rArU) anchored on electrode into shorter produces, giving rise to considerably detectable signal finally. Under the optimal conditions, the electrochemical signal decreased linearly with the concentration of MCF-7 cell. The linear range is from 0 to 500 cells mL(-1) with a detection limit of 47 cellsmL(-1). In a word, this approach may have advantages over traditional reported DNA machines for bioassay, particularly in terms of ease of operation, cost efficiency, free of labeling and of complex track design, which may hold great potential for wide application.
Biosensors and Bioelectronics | 2015
Xianghui Li; Longjie Gan; Qi-Shui Ou; Xi Zhang; Shuxian Cai; Dongzhi Wu; Mei Chen; Yaokun Xia; Jinghua Chen; Bin Yang
Non-invasive early diagnosis of liver cancer is the most effective way to improve the survival rate. In this paper, we developed a label-free and enzyme-free fluorescent biosensor based on target recycling and Thioflavin T (ThT) induced G-quadruplex formation for MXR7 (liver cancer related short gene) detection in human serum. The proposed sensor can detect the target DNA in the concentration range of 0-350fM with the detection limit as low as 10fM. Due to the outstanding structural selectivity of ThT for G-quadruplex, this sensor possesses better discrimination ability and higher sensitivity. Furthermore, this enzyme-free and label-free fluorescence sensor has demonstrated to be capable of detecting target DNA in human serum samples because of its high selectivity and sensitivity. The mechanism employed in this study represents a promising path toward directing liver cancer detection in human serum. In addition, this strategy may be extended to detect other cancer related genes by choosing a rational DNA probe according to different sequences of targets.
Talanta | 2015
Shuxian Cai; Guangwen Li; Xi Zhang; Yaokun Xia; Mei Chen; Dongzhi Wu; Qiuxiang Chen; Jing Zhang; Jinghua Chen
Breast cancer is the most common type of malignant tumor in women. Recently, it has been shown that detection of breast cancer tumor cells outside the primitive tumor is an effective early diagnosis with great prognostic and clinical utility. For this purpose, we developed a signal-on fluorescence aptasensor for label-free, facile and sensitive detection of MCF-7 breast cancer cells. Due to target-aptamer specific recognition and single-stranded DNA-sensitized luminescence of terbium (III), the proposed aptasensor exhibits excellent sensitivity with detection limit as low as 70 cells mL(-1). Compared with common organic dyes and the emerging nano-technological probes, the combination of terbium (III) and single-stranded DNA signal probe (Tb(3+)-SP) serves as a more powerful bio-probe because of its stable optical property, good biocompatibility and free from complex synthesis. The feasibility investigations have illustrated the potential applicability of this aptasensor for selective and sensitive detection of MCF-7 breast cancer cells. Moreover, this proposed aptasensor can be also extended for the determination of other tumor cancers or bio-molecules by altering corresponding aptamers. Taken together, this easy-to-perform aptasensor may represent a promising way for early screening and detection of tumor cancers or other bio-molecules in clinical diagnosis.
Biosensors and Bioelectronics | 2018
Jing Zhang; Liangliang Wang; Mei-Feng Hou; Yaokun Xia; Wenhui He; An Yan; Yun-Ping Weng; Lu-Peng Zeng; Jinghua Chen
Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer.
Biosensors and Bioelectronics | 2018
Xiaosong Chen; Jianming Lan; Yingxin Liu; Li Li; Liu Yan; Yaokun Xia; Fang Wu; Chunyan Li; Shirong Li; Jinghua Chen
Exosomes, as potential cancer diagnostic markers have received close attention in recent years. However, there is still a lack of simple and convenient methods to detect and quantitate exosomes. Herein, we used a simple paper-supported aptasensor based on luminescence resonance energy transfer (LRET) from upconversion nanoparticles (UCNPs) to gold nanorods (Au NRs) for the accessible determination of exosomes. When exosomes are present, the two sections of the aptamer can combine with the CD63 protein on the surface of exosomes and form a conjugation to close the distance between UCNPs and Au NRs, which initiates the LRET and promotes luminescence quenching. These variations can be monitored by the homemade image system, and the green channel intensities of obtained colored images were extracted with photoshop software to quantify the luminescence. As a result, the quenching of the luminescence of the UCNPs is linearly correlated to the concentration of the exosomes (in the range of 1.0 × 104 ~ 1.0 × 108 particles/μL), enabling the detection and quantification of the exosomes. Such approach can reach a low detection limit of exosomes (1.1 × 103 particles/μL) and effectively reduce the background signal by using UCNPs as a luminescent material. This study provides an efficient and practical approach to the detection of exosomes, which should lead to point-of-care testing in clinical applications.
Analytical Chemistry | 2018
Yaokun Xia; Liangliang Wang; Juan Li; Xiangqi Chen; Jianming Lan; An Yan; Yun Lei; Sheng Yang; Huang-Hao Yang; Jinghua Chen
Recently, sensitive and selective detection of exosomal microRNAs (miRNAs) has been garnering significant attention, because it is related to many complex diseases, including cancer. Herein, we report a ratiometric fluorescent bioprobe based on DNA-labeled carbon dots (DNA-CDs) and 5,7-dinitro-2-sulfo-acridone (DSA) coupling with the target-catalyzing signal amplification for the detection of exosomal miRNA-21. There was high fluorescence resonance energy transfer (FRET) efficiency between carbon dots (CDs) and DSA when the bioprobe was assembled. However, in the presence of the target, with disassembling of the fluorescent bioprobe, the fluorescence intensities of CDs and DSA were changed simultaneously. Because of the ratio of dual fluorescence intensities, this ratiometric fluorescent bioprobe was able to cancel out environmental fluctuations by calculating emission intensity ratio at two different wavelengths, being robust and stable enough for detection of exosomal miRNA-21. In addition, we displayed that a single miRNA-21 can catalyze the disassembly of multiple CDs with DSA theoretically, yielding significant change in the fluorescence ratio for the detection of miRNA-21. With this signal amplification strategy, the limit of detection was as low as 3.0 fM. Furthermore, because of the introduction of lock nucleic acid to mediate the strand displacement reaction, the selectivity of this strategy was improved remarkably, even against single base mismatch sequence. More importantly, our strategy could monitor the dynamic change of exosomal miRNA-21, which maybe becomes a potential tool to distinguish cancer exosomes and nontumorigenic exosomes. In a short, this ratiometric fluorescence bioprobe possessed high stability, sensitivity and selectivity coupling with ease of operation and cost efficiency, leading to great potential for wide application.
Biosensors and Bioelectronics | 2018
Jing Zhang; Liangliang Wang; Mei-Feng Hou; Li-Pei Luo; Yi-Juan Liao; Yaokun Xia; An Yan; Yun-Ping Weng; Lu-Peng Zeng; Jinghua Chen
Abnormal levels of guanine closely associated with plenty of diseases are usually used as a biomarker for clinical diagnosis. In order to detect guanine and its derivatives accurately, in this paper, a defective G-quadruplex (DGQ) containing a G-vacancy at one of its G-quartet layers, and two kinds of G-quadruplex specific indicators including thioflavine T (ThT) and hemin were used for constructing a fluorescent and an electrochemical biosensor, respectively. In brief, a G-rich DNA probe is designed to form either hairpin or DGQ structure. In the absence of guanine, G-rich probes prefer to maintain hairpin structure and nearly have no interaction with ThT or hemin, leading to almost negligible signals. Upon addition of guanine, the G-rich probe fold into DGQ structure and then the G-vacancy in it is filled up immediately by guanine via Hoogsteen hydrogen bonds, resulting canonical G-quadruplex formation. Accordingly, ThT or hemin can selectively combine with G-quadruplex, giving rise to distinct fluorescent or current signal changes for label-free detection of guanine. Benefiting from the perfect discriminative ability of guanine towards DGQ and ThT/hemin against standard G-quadruplex, the fluorescent and electrochemical biosensors present better sensitivity and selectivity for guanine detection with the limit of detection (LOD) as low as 18.26 and 0.36 nM, respectively. Successful attempts were also made in applying the proposed electrochemical biosensor to detect guanine in drugs and urine, obtaining satisfactory recovery rates of 99~104% and 96~106%, respectively.
Chemical Communications | 2014
Xi Zhang; Dongzhi Wu; Zhijing Liu; Shuxian Cai; Yanping Zhao; Mei Chen; Yaokun Xia; Chunyan Li; Jing Zhang; Jinghua Chen
Biosensors and Bioelectronics | 2017
Yaokun Xia; Mengmeng Liu; Liangliang Wang; An Yan; Wenhui He; Mei Chen; Jianming Lan; Jiaoxing Xu; Lunhui Guan; Jinghua Chen