Yaosheng Wang
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaosheng Wang.
Functional Plant Biology | 2010
Yaosheng Wang; Fulai Liu; Mathias Neumann Andersen; Christian R. Jensen
Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on stomatal conductance (gs), nitrogen accumulation and distribution in tomato (Lycopersicon esculentum L.) plants were investigated in a split-root pot experiment. Results showed that both PRI and DI saved 25% water and led to 10.0% and 17.5% decreases in dry biomass, respectively, compared with the fully irrigated (FI) controls. Consequently, water use efficiency (WUE) was increased by 18.6% and 10.8% in the PRI and DI plants, respectively. The highest WUE in the PRI plants was associated with the highest carbon isotope composition (δ13C), indicating that the improvement of WUE might have been a result of long-term optimisation of stomatal control over gas exchange. The constantly higher xylem sap ABA concentration in PRI compared with DI plants was seemingly responsible for the greater control over stomatal conductance during the treatment. At the end of the experiment, N accumulation and 15N recovery was highest in FI, intermediate in PRI and lowest in DI. In addition, PRI plants consistently allocated more N into the upper and middle leaf layers than in the FI and DI treatments. The improved N nutrition and distribution in the canopy may indicate that PRI plants have a greater photosynthetic capacity than DI plants; this is confirmed by the observed positive linear relationship between specific leaf N content and δ13C. It is concluded that PRI improves N nutrition and optimises N distribution in the canopy, which might have been partly contributed to the high WUE in PRI tomato plants.
Journal of Experimental Botany | 2012
Yaosheng Wang; Fulai Liu; Christian R. Jensen
Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants.
Plant and Soil | 2010
Yaosheng Wang; Fulai Liu; Andreas de Neergaard; Lars Stoumann Jensen; Jesper Luxhøi; Christian R. Jensen
Given the same amount of irrigation volume, applying alternate partial root-zone irrigation (PRI) has improved crop N nutrition as compared to deficit irrigation (DI), yet the mechanisms underlying this effect remain unknown. Therefore, the objective of this study was to investigate whether PRI induced soil dry/wet cycles facilitate soil organic N mineralization hereby contributing to the improvement of N nutrition in tomatoes. The plants were grown in split-root pots in a climate-controlled glasshouse and were subjected to PRI and DI treatments during early fruiting stage. 15N-labeled maize residues were incorporated into the soils. Results showed that PRI resulted in 25% higher net 15N mineralization than did DI, indicating that the enhanced mineralization of soil organic N alone could account for the 16% increase of N accumulation in the PRI than in the DI plants. The higher net N mineralization under PRI was coincided with an intensified soil microbial activity. In addition, even though soil chloroform fumigation labile carbon (CFL-C, as an index of microbial biomass) was similar for the two irrigation treatments, a significant increase of chloroform fumigation labile nitrogen (CFL-N) was found in the PRI wetting soil. Consequently, the C:N ratio of the chloroform fumigation labile pool was remarkably modified by the PRI treatment, which might indicate physiological changes of soil microbes or changes in labiality of soil organic C and N due to the dry/wet cycles of soils, altering conditions for net N mineralization. Moreover, in both soil compartments PRI caused significantly less extractable organic carbon (EOC) as compared with DI; whilst in the PRI wetting soil significantly higher extractable organic nitrogen (EON) was observed. A low EOC:EON ratio in the PRI wetting soil may indicate an increasing net mineralization of the organic N as a result of microbial metabolism. Conclusively, PRI induced greater microbial activity and higher microbial substrates availability are seemingly responsible for the enhanced net N mineralization and improved N nutrition in tomato plants.
Irrigation Science | 2013
Yaosheng Wang; Fulai Liu; Lars Stoumann Jensen; Andreas de Neergaard; Christian R. Jensen
The objective of this study was to investigate the comparative effects of alternative partial root-zone irrigation (PRI) and deficit irrigation (DI) on fertilizer-N use efficiency in tomato plants under mineral N and organic N fertilizations. The plants were grown in split-root pots in a climate-controlled glasshouse and were subjected to PRI and DI treatments during early fruiting stage. When analyzed across the N fertilizer treatments, PRI treatment led to significantly higher N yield, agronomic N use efficiency (ANUE), and apparent N recovery efficiency (ANRE) as compared with the DI treatment, indicating significantly higher fertilizer-N use efficiency and soil N availability as well as enhanced plant’s N acquisition ability in the PRI treatment. Analysis across the irrigation treatments showed that the mineral N fertilizer treatment (MinN) significantly increased N yield, ANUE and ANRE relative to the organic N fertilizer treatment (OrgN). Compared with DI, the rhizosphere and bulk soil mineral N content in the soil were significantly lowered in the PRI treatment, indicating the enhanced root N uptake efficiency. It is suggested that PRI-enhanced soil water dynamics may have increased soil nitrate mass/diffusive flow to the root surfaces and root N uptake efficiency in the wetting soil and stimulated soil N mineralization and plant N demand, contributing to the improved fertilizer-N use efficiency in the PRI relative to the DI treatment.
Frontiers in Plant Science | 2016
Yaosheng Wang; Kristian Thorup-Kristensen; Lars Stoumann Jensen; Jakob Magid
A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration and content of macro- and micronutrients were identified. A significant genetic variability in root and root hair traits as well as nutrient uptake was found. Fast and early root proliferation and long and dense root hairs enhanced uptake of macro- and micronutrients under low soil nutrient availability. Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient concentrations in the shoots, which is assumed to be important for later plant development.
Journal of Horticultural Science & Biotechnology | 2012
Yaosheng Wang; Fulai Liu; Christian R. Jensen
Summary The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared to the DI treatment. PRI-treated plants accumulated significantly higher amounts of P in their shoots than DI plants under organic maize straw N fertilisation, whereas similar levels of shoot P accumulation were observed under mineral N fertilisation. Thus, the form of N fertiliser, and thereby the different plant N status, affected the accumulation of P in shoots, as reflected by a higher plant N:P ratio following mineral N fertilisation than after organic N fertilisation. Compared to the DI treatment, PRI significantly increased both the physiological and agronomic efficiencies of P-use under mineral N fertilisation, while similar physiological and agronomic P-use efficiencies were found between the two irrigation treatments with organic N fertilisation. PRI-induced drying and wetting processes might have influenced the bio-availability of soil P, as the concentrations of bio-available P in both bulk and rhizosphere soils were increased compared with the DI treatment under both forms of N fertilisation. It is suggested that a relatively high soil water content in the wet zone of the PRI treatment should be maintained in order to facilitate nutrient (i.e., N and P) transport from the bulk soil to the root surface, thereby enhancing nutrient uptake by the roots.
Plant Soil and Environment | 2016
Yaosheng Wang; Lars Stoumann Jensen; Jakob Magid
Root plasticity is important for plants to adapt to heterogeneous nutrient environments. The differential responses of six spring wheat genotypes were investigated; the plants had been subjected to deficient (2 μmol) and abundant phosphorus (P) (200 μmol) concentration. Root (length, surface area and diameter) and root hair traits (length and density), soil acidification and uptake of macroand micronutrients were determined. Under low P supply all genotypes exhibited symptoms of P stress, such as poor shoot and root growth, starch accumulation and a release of substantial quantities of proton and acid from roots. Larger genotypic differences in root hair length and density than root length, surface area and diameter were observed. In response to P stress genotype April Bearded responded strongly by increasing its root hair density, while A35–213 and Hankkijan Tapio substantially increased root hair length. Other genotypes showed less positive responses or even negative ones in root hair traits. Thus, density of root hairs appears to be a more P-regulated and P-responsive trait than root hair length. April Bearded acidified the most and Hindy62 released most organic acid in response to P deficiency.
Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2018
Yaosheng Wang; Lars Stoumann Jensen; Jakob Magid
ABSTRACT Purpose: Root and root hairs of plants have been intensively studied in solution culture; however, correlation of such measurements in solution culture with development in soil is poorly understood. Therefore, the aim of this study is to study whether root and root hairs grown in solution culture can predict their behavior in soil and their correlation with macro- and micronutrients uptake of wheat genotypes. Materials and methods: The growth of roots and root hairs as well as uptake of macro- and micronutrients of six spring wheat varieties was compared in solution culture under P stress and P abundance and in a low fertility soil. Results and conclusions: Root length and surface area under P stress were significantly positively correlated with that in the low fertility soil, while no such correlation was apparent for root hair length and density. In absolute terms, the root length, surface area, root hair length and density of spring wheat varieties were substantially higher in soil than in solution culture, while the concentration and uptake of macro- and micronutrients in soil differed from solution culture in a complex way. The early uptake of macro- and micronutrients was intimately associated with root length and surface area as well as root hair length and density in soil but not in solution culture. Therefore, root length rather than root hair traits in low-P solution may be used to screen early root growth vigor in soil and thereby high nutrient uptake of wheat in low fertility soil.
Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2017
Yaosheng Wang; Jakob Magid; Kristian Thorup-Kristensen; Lars Stoumann Jensen
ABSTRACT Determining genotypic responses to soil fertility may assist selection of cultivars that can be adapted to varied soil fertility regimes, and such selection under field conditions is still limited. A two-year field experiment was conducted in long-term field trials to investigate wheat genotype effects on early growth, yield and nutrient accumulation as affected by varied long-term soil fertility managements and nitrogen (N) fertilization. Results show that the early growth, grain yield and nutrient accumulation of spring wheat plants were strongly affected by soil fertility managements and genotypes. Early shoot and root biomass of singly grown plants and leaf canopy growth under standard growth density was associated with subsequent grain yield of plants under standard growth density across the gradient in soil fertility levels. Taifun and Thasos had stable higher yield and N and phosphorus (P) uptake across varied soil fertility regimes compared with other genotypes. Økilde, however, increased yield by 8–34% and N and P accumulation by 1–22% only when grown in the high organic manure treatment compared with other genotypes, indicating that it is more adapted to high organic fertility regimes. Therefore, the different responses and adaptations of genotypes to soil fertility regimes should be included during selection of cultivars.
Agricultural Water Management | 2010
Yaosheng Wang; Fulai Liu; Mathias Neumann Andersen; Christian R. Jensen