Yaoyao Ye
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaoyao Ye.
ieee computer society annual symposium on vlsi | 2011
Weichen Liu; Jiang Xu; Xiaowen Wu; Yaoyao Ye; Xuan Wang; Wei Zhang; Mahdi Nikdast; Zhehui Wang
As benchmark programs for microprocessor architectures, network-on-chip (NoC) traffic patterns are essential tools for NoC performance assessments and architecture explorations. The fidelity of NoC traffic patterns has profound influence on NoC studies. For the first time, this paper presents a realistic traffic benchmark suite, called MCSL, and the methodology used to generate it. The publicly released MCSL benchmark suite includes a set of realistic traffic patterns for 8 real applications and covers popular NoC architectures. It captures not only the communication behaviors in NoCs but also the temporal dependencies among them. MCSL benchmark suite can be easily incorporated into existing NoC simulators and significantly improve NoC simulation accuracy. We developed a systematic traffic generation methodology to create MCSL based on real applications. The methodology uses formal computational models to capture both communication and computation requirements of applications. It optimizes application mapping and scheduling to faithfully maximize overall system performance and utilization before extracting realistic traffic patterns through cycle-accurate simulations. Experiment results show that MCSL benchmark suite can be used to study NoC characteristics more accurately than traditional random traffic patterns.
design automation conference | 2010
Yiyuan Xie; Mahdi Nikdast; Jiang Xu; Wei Zhang; Qi Li; Xiaowen Wu; Yaoyao Ye; Xuan Wang; Weichen Liu
Crosstalk noise is an intrinsic characteristic of photonic devices used by optical networks-on-chip (ONoCs) as well as a potential issue. For the first time, this paper analyzed and modeled the crosstalk noise, signal-to-noise ratio (SNR), and bit error rate (BER) of optical routers and ONoCs. The analytical models for crosstalk noise, minimum SNR, and maximum BER in mesh-based ONoCs are presented. An automated crosstalk analyzer for optical routers is developed. We find that crosstalk noise significantly limits the scalability of ONoCs. For example, due to crosstalk noise, the maximum BER is 10−3 on the 8×8 mesh-based ONoC using an optimized crossbar-based optical router. To achieve the BER of 10−9 for reliable transmissions, the maximum ONoC size is 6×6. A novel compact high-SNR optical router is proposed to improve the maximum ONoC size to 8×8.
ACM Journal on Emerging Technologies in Computing Systems | 2012
Yaoyao Ye; Jiang Xu; Xiaowen Wu; Wei Zhang; Weichen Liu; Mahdi Nikdast
Networks-on-chip (NoCs) are emerging as a key on-chip communication architecture for multiprocessor systems-on-chip (MPSoCs). Optical communication technologies are introduced to NoCs in order to empower ultra-high bandwidth with low power consumption. However, in existing optical NoCs, communication locality is poorly supported, and the importance of floorplanning is overlooked. These significantly limit the power efficiency and performance of optical NoCs. In this work, we address these issues and propose a torus-based hierarchical hybrid optical-electronic NoC, called THOE. THOE takes advantage of both electrical and optical routers and interconnects in a hierarchical manner. It employs several new techniques including floorplan optimization, an adaptive power control mechanism, low-latency control protocols, and hybrid optical-electrical routers with a low-power optical switching fabric. Both of the unfolded and folded torus topologies are explored for THOE. Based on a set of real MPSoC applications, we compared THOE with a typical torus-based optical NoC as well as a torus-based electronic NoC in 45nm on a 256-core MPSoC, using a SystemC-based cycle-accurate NoC simulator. Compared with the matched electronic torus-based NoC, THOE achieves 2.46X performance and 1.51X network switching capacity utilization, with 84% less energy consumption. Compared with the optical torus-based NoC, THOE achieves 4.71X performance and 3.05X network switching capacity utilization, while reducing 99% of energy consumption. Besides real MPSoC applications, a uniform traffic pattern is also used to show the average packet delay and network throughput of THOE. Regarding hardware cost, THOE reduces 75% of laser sources and half of optical receivers compared with the optical torus-based NoC.
ieee computer society annual symposium on vlsi | 2010
Kwai Hung Mo; Yaoyao Ye; Xiaowen Wu; Wei Zhang; Weichen Liu; Jiang Xu
Network-on-chip (NoC) can improve the performance, power efficiency, and scalability of multiprocessor system-on-chip (MPSoC). However, traditional NoCs using metallic interconnects consume significant amount of power to deliver even higher communication bandwidth required in the near future. Optical NoCs are based on CMOS-compatible optical waveguides and micro resonators, and promise significant bandwidth and power advantages. In this paper, we propose a hybrid optical mesh NoC, HOME, which utilizes optical waveguides as well as metallic interconnects in a hierarchical manner. HOME employs a new set of protocols to improve the network throughput and latency. We compared HOME with a matched optical mesh NoC for a 64-core MPSoC in 45nm, using SPICE simulations and our cycle-accurate multi-objective NoC simulation platform, MoLab. Comparing with the optical mesh NoC, HOME uses 75% less optical/electronic interfaces and laser diodes. Simulation results show that HOME achieves 17% higher throughput and 40% less latency while consuming 42% less power.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 2013
Yaoyao Ye; Jiang Xu; Baihan Huang; Xiaowen Wu; Wei Zhang; Xuan Wang; Mahdi Nikdast; Zhehui Wang; Weichen Liu; Zhe Wang
Optical networks-on-chip (ONoCs) are emerging communication architectures that can potentially offer ultrahigh communication bandwidth and low latency to multiprocessor systems-on-chip (MPSoCs). In addition to ONoC architectures, 3-D integrated technologies offer an opportunity to continue performance improvements with higher integration densities. In this paper, we present a 3-D mesh-based ONoC for MPSoCs, and new low-cost nonblocking 4 × 4, 5 × 5, 6 × 6, and 7 × 7 optical routers for dimension-order routing in the 3-D mesh-based ONoC. Besides, we propose an optimized floorplan for the 3-D mesh-based ONoC. The floorplan follows the regular 3-D mesh topology but implements all optical routers in a single optical layer. The floorplan is optimized to minimize the number of extra waveguide crossings caused when merging the 3-D ONoC to one optical layer. Based on a set of real applications and uniform traffic pattern, we develop a SystemC-based cycle-accurate NoC simulator and compare the 3-D mesh-based ONoC with the matched 2-D mesh-based ONoC and 2-D electronic NoC for performance and energy efficiency. Additionally, we quantitatively analyze thermal effects on the 3-D 8 × 8 × 2 mesh-based ONoC.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 2014
Mahdi Nikdast; Jiang Xu; Xiaowen Wu; Wei Zhang; Yaoyao Ye; Xuan Wang; Zhehui Wang; Zhe Wang
Photonic devices are widely used in optical networks-on-chip (ONoCs) and suffer from crosstalk noise. The accumulative crosstalk noise in large scale ONoCs diminishes the signal-to-noise ratio (SNR), causes severe performance degradation, and constrains the network scalability. For the first time, this paper systematically analyzes and models the worst-case crosstalk noise and SNR in folded-torus-based ONoCs. Formal analytical models for the worst-case crosstalk noise and SNR are presented. The crosstalk noise analysis is hierarchically performed at the basic photonic device level, then at the optical router level, and finally at the network level. We consider a general 5 × 5 optical router model to enable crosstalk noise and SNR analyses in folded-torus-based ONoCs using an arbitrary 5 × 5 optical router. Using the general optical router model, the worst-case SNR link candidates, which restrict the network scalability, are found. Also, we present a novel crosstalk noise and loss analysis platform, called CLAP, which can analyze the crosstalk noise and SNR of arbitrary ONoCs. Case studies of optimized crossbar and Crux optical routers using recent photonic device parameters are presented. Moreover, we compare the worst-case crosstalk noise and SNR in folded-torus-based and mesh-based ONoCs using optimized crossbar and Crux optical routers. The quantitative simulation results show the critical behavior of crosstalk noise in large scale ONoCs. For example, in folded-torus-based ONoCs using the Crux optical router, the noise power exceeds the signal power for network sizes larger than 12 × 12; when the network size is 20 × 20 and the injection signal power equals 0 dBm, the signal power and noise power are -9.4 dBm and -6.1 dBm, respectively.
IEEE Transactions on Very Large Scale Integration Systems | 2013
Yiyuan Xie; Mahdi Nikdast; Jiang Xu; Xiaowen Wu; Wei Zhang; Yaoyao Ye; Xuan Wang; Zhehui Wang; Weichen Liu
Crosstalk noise is an intrinsic characteristic as well as a potential issue of photonic devices. In large scale optical networks-on-chips (ONoCs), crosstalk noise could cause severe performance degradation and prevent ONoC from communicating properly. The novel contribution of this paper is the systematical modeling and analysis of the crosstalk noise and the signal-to-noise ratio (SNR) of optical routers and mesh-based ONoCs using a formal method. Formal analytical models for the worst-case crosstalk noise and minimum SNR in mesh-based ONoCs are presented. The crosstalk analysis is performed at device, router, and network levels. A general 5 × 5 optical router model is proposed for router level analysis. The minimum SNR optical link candidates, which constrain the scalability of mesh-based ONoCs, are identified. It is also shown that symmetric mesh-based ONoCs have the best SNR performance. The presented formal analyses can be easily applied to other optical routers and mesh-based ONoCs. Finally, we present case studies of mesh-based ONoCs using the optimized crossbar and Crux optical routers to evaluate the proposed formal method. We find that crosstalk noise can significantly limit the scalability of mesh-based ONoCs. For example, when the mesh-based ONoC size, using optimized crossbar, is larger than 8 × 8, the optical signal power is smaller than the crosstalk noise power; when the network size is 16 × 16 and the input power is 0 dBm, in the worst-case, the signal power is -24.9 dBm and the crosstalk noise power is -11 dBm.
IEEE Transactions on Parallel and Distributed Systems | 2011
Weichen Liu; Zonghua Gu; Jiang Xu; Xiaowen Wu; Yaoyao Ye
Task graph scheduling on multiprocessor systems is a representative multiprocessor scheduling problem. A solution to this problem consists of the mapping of tasks to processors and the scheduling of tasks on each processor. Optimal solution can be obtained by exploring the entire design space of all possible mapping and scheduling choices. Since the problem is NP-hard, scalability becomes the main concern in solving the problem optimally. In this paper, a SAT-based optimization framework is proposed to address this problem, in which SAT solver is enhanced by integrating with a scheduling analysis tool in a branch and bound manner to prune the solution space efficiently. Performance evaluation results show that our technique has average performance improvement in more than an order of magnitude compared to state-of-the-art techniques. We further build a cycle-accurate network-on-chip simulator based on SystemC to verify the effectiveness of the proposed technique on realistic multiprocessor systems.
2009 IEEE International Conference on 3D System Integration | 2009
Yaoyao Ye; Lian Duan; Jiang Xu; Jin Ouyang; Mo Kwai Hung; Yuan Xie
Networks-on-chip (NoC) is emerging as a key on-chip communication architecture for multiprocessor systems-on-chip (MPSoC). In traditional electronic NoCs, high bandwidth can be obtained by increasing the number of parallel metallic wires at the cost of more energy consumption. Optical NoCs are thus proposed to achieve low-power ultra-high-bandwidth data transmission in optical domain. Electronic control technology could be a complement to the optical networks. Besides NoCs, three-dimensional integrated circuits (3D ICs) are another attractive solution for system performance improvement by reducing the interconnect length. The investigation of using 3D IC as a platform for the realization of mixed-technology electronic-controlled optical NoC has not been addressed until recently. In this paper, we propose a 3D electronic-controlled optical NoC implemented in a TSV-based (through-silicon via) two-layer 3D chip. The upper device layer is an optical layer. It integrates an optical data transmission network, which is responsible for optical payload packets transmission. The bottom device layer is an electronic layer. It contains an electronic control network, which is used to route control packets and configure the optical network. We built an 8×8 mesh-based 3D optical NoC, with a 45nm electronic control network. Power comparison with a matched 2D electronic NoC shows that the optical NoC can reduce power consumption significantly. For 2048B packets, it has a 70% power reduction. End-to-end delay (ETE delay) and network throughput of the two NoCs under varying injection rates were evaluated for comparison. The results show that ETE delay of the optical NoC is much smaller than the electronic NoC when the network becomes congested. Take 4096B packets for example, it is 18.7µs in the optical NoC with an injection rate of 0.5, while 33.5µs in the electronic one. A maximum throughput of 478Gbps can be offered by the optical NoC using 32Gbps optical link bandwidth. Because of the low resource utilization of circuit switching, the maximum throughput of the optical NoC is slightly lower than the electronic one.
IEEE Transactions on Very Large Scale Integration Systems | 2013
Yaoyao Ye; Jiang Xu; Xiaowen Wu; Wei Zhang; Xuan Wang; Mahdi Nikdast; Zhehui Wang; Weichen Liu
The performance of multiprocessor systems, such as chip multiprocessors (CMPs), is determined not only by individual processor performance, but also by how efficiently the processors collaborate with one another. It is the communication architecture that determines the collaboration efficiency on the hardware side. Optical networks-on-chip (ONoCs) are emerging communication architectures that can potentially offer ultra-high communication bandwidth and low latency to multiprocessor systems. Thermal sensitivity is an intrinsic characteristic of photonic devices used by ONoCs as well as a potential issue. This paper systematically modeled and quantitatively analyzed the thermal effects in ONoCs. We used an 8 × 8 mesh-based ONoC as a case study and evaluated the impacts of thermal effects in the average power efficiency for real MPSoC applications. We revealed three important factors regarding ONoC power efficiency under temperature variations, and proposed several techniques to reduce the temperature sensitivity of ONoCs. These techniques include the optimal initial setting of microresonator resonant wavelength, increasing the 3-dB bandwidth of optical switching elements by parallel coupling multiple microresonators, and the use of passive-routing optical router Crux to minimize the number of switching stages in mesh-based ONoCs. We gave a mathematical analysis of periodically parallel coupling of multiple microresonators and show that the 3-dB bandwidth of optical switching elements can be widened nearly linearly with the ring number. Evaluation results for different real MPSoC applications show that, on the basis of thermal tuning, the optimal device setting improves the average power efficiency by 54% to 1.2 pJ/bit when chip temperature reaches 85 °C. The findings in this paper can help support the further development of this emerging technology.