Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaoyu Chen is active.

Publication


Featured researches published by Yaoyu Chen.


Nature Genetics | 2009

Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia

Yaoyu Chen; Yiguo Hu; Haojian Zhang; Cong Peng; Shaoguang Li

Targeting of cancer stem cells is believed to be essential for curative therapy of cancers, but supporting evidence is limited. Few selective target genes in cancer stem cells have been identified. Here we identify the arachidonate 5-lipoxygenase (5-LO) gene (Alox5) as a critical regulator for leukemia stem cells (LSCs) in BCR-ABL–induced chronic myeloid leukemia (CML). In the absence of Alox5, BCR-ABL failed to induce CML in mice. This Alox5 deficiency caused impairment of the function of LSCs but not normal hematopoietic stem cells (HSCs) through affecting differentiation, cell division and survival of long-term LSCs (LT-LSCs), consequently causing a depletion of LSCs and a failure of CML development. Treatment of CML mice with a 5-LO inhibitor also impaired the function of LSCs similarly by affecting LT-LSCs, and prolonged survival. These results demonstrate that a specific target gene can be found in cancer stem cells and its inhibition can completely inhibit the function of these stem cells.


Leukemia | 2009

beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia.

Yiguo Hu; Yaoyu Chen; Lory Douglas; Shaoguang Li

Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) induced by the BCR-ABL oncogene is believed to be developed from leukemic stem cells (LSCs), and we have previously shown in mice that LSCs for CML express the same cell surface markers that are also expressed on normal hematopoietic stem cells (HSCs). Although the inhibition of BCR-ABL kinase activity by imatinib is highly effective in treating human Ph+ CML in chronic phase, it is difficult to achieve molecular remission of the disease, suggesting that LSCs remain in patients. In this study, we find that following imatinib treatment, LSCs not only remained but also accumulated increasingly in bone marrow of CML mice. This insensitivity of LSCs to imatinib was not because of the lack of BCR-ABL kinase inhibition by imatinib, and proliferating leukemic cells derived from LSCs were still sensitive to growth inhibition by imatinib. These results identify an LSC survival pathway that is not inhibited by imatinib. Furthermore, we show that β-catenin in the Wnt signaling pathway is essential for survival and self-renewal of LSCs, providing a new strategy for targeting these cells.


Blood | 2010

PTEN is a tumor suppressor in CML stem cells and BCR-ABL–induced leukemias in mice

Cong Peng; Yaoyu Chen; Zhong-Fa Yang; Haojian Zhang; Lori Osterby; Alan G. Rosmarin; Shaoguang Li

The tumor suppressor gene phosphatase and tensin homolog (PTEN) is inactivated in many human cancers. However, it is unknown whether PTEN functions as a tumor suppressor in human Philadelphia chromosome-positive leukemia that includes chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL) and is induced by the BCR-ABL oncogene. By using our mouse model of BCR-ABL-induced leukemias, we show that Pten is down-regulated by BCR-ABL in leukemia stem cells in CML and that PTEN deletion causes acceleration of CML development. In addition, overexpression of PTEN delays the development of CML and B-ALL and prolongs survival of leukemia mice. PTEN suppresses leukemia stem cells and induces cell-cycle arrest of leukemia cells. Moreover, PTEN suppresses B-ALL development through regulating its downstream gene Akt1. These results demonstrate a critical role of PTEN in BCR-ABL-induced leukemias and suggest a potential strategy for the treatment of Philadelphia chromosome-positive leukemia.


Leukemia | 2009

Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice

Yaoyu Chen; Yiguo Hu; Shawnya Michaels; David Segal; Dennis M. Brown; Shaoguang Li

Omacetaxine mepesuccinate (formerly homoharringtonine) is a molecule with a mechanism of action that is different from tyrosine kinase inhibitors, and its activity in chronic myeloid leukemia (CML) seems to be independent of the BCR-ABL mutation status. Using BCR-ABL-expressing myelogenous and lymphoid cell lines and mouse models of CML and B-cell acute lymphoblastic leukemia (B-ALL) induced by wild-type BCR-ABL or T315I mutant-BCR-ABL, we evaluated the inhibitory effects of omacetaxine on CML and B-ALL. We showed that more than 90% of the leukemic stem cells were killed after treatment with omacetaxine in vitro. In contrast, less than 9 or 25% of the leukemic stem cells were killed after treating with imatinib or dasatinib, respectively. After 4 days of treatment of CML mice with omacetaxine, Gr-1+myeloid leukemia cells decreased in the peripheral blood of the treated CML mice. In the omacetaxine-treated B-ALL mice, only 0.8% of the B220+leukemia cells were found in peripheral blood, compared with 34% of the B220+leukemia cells in the placebo group. Treatment with omacetaxine decreased the number of leukemia stem cells and prolonged the survival of mice with BCR-ABL-induced CML or B-ALL.


PLOS ONE | 2009

Alveolar Epithelial Type II Cells Activate Alveolar Macrophages and Mitigate P. Aeruginosa Infection

Shibichakravarthy Kannan; Huang Huang; Drew R. Seeger; Aaron Audet; Yaoyu Chen; Canhua Huang; Hongwei Gao; Shaoguang Li; Min Wu

Although alveolar epithelial type II cells (AECII) perform substantial roles in the maintenance of alveolar integrity, the extent of their contributions to immune defense is poorly understood. Here, we demonstrate that AECII activates alveolar macrophages (AM) functions, such as phagocytosis using a conditioned medium from AECII infected by P. aeruginosa. AECII-derived chemokine MCP-1, a monocyte chemoattractant protein, was identified as a main factor in enhancing AM function. We proposed that the enhanced immune potency of AECII may play a critical role in alleviation of bacterial propagation and pneumonia. The ability of phagocytosis and superoxide release by AM was reduced by MCP-1 neutralizing antibodies. Furthermore, MCP-1−/− mice showed an increased bacterial burden under PAO1 and PAK infection vs. wt littermates. AM from MCP-1−/− mice also demonstrated less superoxide and impaired phagocytosis over the controls. In addition, AECII conditioned medium increased the host defense of airway in MCP-1−/− mice through the activation of AM function. Mechanistically, we found that Lyn mediated NFκB activation led to increased gene expression and secretion of MCP-1. Consequently Lyn−/− mice had reduced MCP-1 secretion and resulted in a decrease in superoxide and phagocytosis by AM. Collectively, our data indicate that AECII may serve as an immune booster for fighting bacterial infections, particularly in severe immunocompromised conditions.


Leukemia | 2010

Critical molecular pathways in cancer stem cells of chronic myeloid leukemia

Yaoyu Chen; Cong Peng; Con Sullivan; Dongguang Li; Shaoguang Li

Inhibition of BCR-ABL with kinase inhibitors in the treatment of Philadelphia-positive (Ph+) chronic myeloid leukemia (CML) is highly effective in controlling but not curing the disease. This is largely due to the inability of these kinase inhibitors to kill leukemia stem cells (LSCs) responsible for disease relapse. This stem cell resistance is not associated with the BCR-ABL kinase domain mutations resistant to kinase inhibitors. Development of curative therapies for CML requires the identification of crucial molecular pathways responsible for the survival and self-renewal of LSCs. In this review, we will discuss our current understanding of these crucial molecular pathways in LSCs and the available therapeutic strategies for targeting these stem cells in CML.


Cell Cycle | 2009

The Alox5 gene is a novel therapeutic target in cancer stem cells of chronic myeloid leukemia

Yaoyu Chen; Dongguang Li; Shaoguang Li

Cancer stem cells (CSCs) are believed to be the initiating cells for many types of blood cancer and some solid tumors, and curative therapies of these cancers require eradicating CSCs. Specific targeting of CSCs but not normal stem cell counterparts is a correct strategy for developing new anti-cancer therapies, and the success of this approach relies on identification of specific target genes in CSCs. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a cancer model, we recently identified arachidonate 5-lipoxygenase (5-LO) gene (Alox5) as a critical regulator for leukemia stem cells (LSCs) in CML. Without Alox5, BCR-ABL fails to induce CML in mice due to the impairments of the functions of LSCs. The lack of Alox5 does not significantly affect the functions of normal hematopoietic stem cells. In addition, Zileuton, a specific 5-LO inhibitor, also causes the impairments of the functions of LSCs in a similar manner. Our results prove the principle that CSC-specific genes that play key roles in cancer development can be identified and inhibition of these genes can lead to eradication of these cells for cure. Here, we further discuss the mechanisms of Alox5 in CML, and the use of Zileuton as a potential and promising drug in eradicating LSCs in CML and other myeloproliferative diseases. We believe that our discovery of the role of Alox5 in regulating the function of LSCs in CML reminds us of viewing CSCs at a different angel. We predict that CSCs in other types of cancer also utilize specific regulatory pathways to control their survival and self-renewal, and inhibition of these pathways profoundly suppresses CSCs but not their normal stem cell counterparts. Specific targeting of CSCs without causing significant harm to normal stem cells should be a correct direction to go in developing novel therapeutic strategies in the future.


Protein & Cell | 2010

Molecular and cellular bases of chronic myeloid leukemia

Yaoyu Chen; Cong Peng; Dongguang Li; Shaoguang Li

Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the overproduction of granulocytes, which leads to high white blood cell counts and splenomegaly in patients. Based on clinical symptoms and laboratory findings, CML is classified into three clinical phases, often starting with a chronic phase, progressing to an accelerated phase and ultimately ending in a terminal phase called blast crisis. Blast crisis phase of CML is clinically similar to an acute leukemia; in particular, B-cell acute lymphoblastic leukemia (B-ALL) is a severe form of acute leukemia in blast crisis, and there is no effective therapy for it yet. CML is induced by the BCR-ABL oncogene, whose gene product is a BCR-ABL tyrosine kinase. Currently, inhibition of BCR-ABL kinase activity by its kinase inhibitor such as imatinib mesylate (Gleevec) is a major therapeutic strategy for CML. However, the inability of BCR-ABL kinase inhibitors to completely kill leukemia stem cells (LSCs) indicates that these kinase inhibitors are unlikely to cure CML. In addition, drug resistance due to the development of BCRABL mutations occurs before and during treatment of CML with kinase inhibitors. A critical issue to resolve this problem is to fully understand the biology of LSCs, and to identify key genes that play significant roles in survival and self-renewal of LSCs. In this review, we will focus on LSCs in CML by summarizing and discussing available experimental results, including the original studies from our own laboratory.


Nature Genetics | 2012

The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells

Haojian Zhang; Cong Peng; Yiguo Hu; Huawei Li; Zhi Sheng; Yaoyu Chen; Con Sullivan; Jan Cerny; Lloyd Hutchinson; Anne W. Higgins; Patricia M. Miron; Xueqing Zhang; Michael A. Brehm; Dongguang Li; Michael R. Green; Shaoguang Li

A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL–induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Blk suppresses LSC function through a pathway involving an upstream regulator, Pax5, and a downstream effector, p27. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. Blk also suppresses the proliferation of human CML stem cells. Our results show the feasibility of selectively targeting LSCs, an approach that should be applicable to other cancers.


Anti-cancer Agents in Medicinal Chemistry | 2010

Novel Therapeutic Agents Against Cancer Stem Cells of Chronic Myeloid Leukemia

Yaoyu Chen; Cong Peng; Con Sullivan; Dongguang Li; Shaoguang Li

Chronic myeloid leukemia (CML) is induced by the BCR-ABL oncogene, a product of Philadelphia (Ph) chromosome. The BCR-ABL kinase inhibitor imatinib is a standard treatment for Ph+ leukemia, and has been shown to induce a complete hematologic and cytogenetic response in most chronic phrase CML patients. However, imatinib does not cure CML, and one of the reasons is that imatinib does not kill leukemia stem cells (LSCs) in CML both in vitro and in vivo. Recently, several new targets or drugs have been reported to inhibit LSCs in cultured human CD34+ CML cells or in mouse model of BCR-ABL induced CML, including an Alox5 pathway inhibitor, Hsp90 inhibitors, omacetaxine, hedgehog inhibitor and BMS-214662. Specific targeting of LSCs but not normal stem cell is a correct strategy for developing new anti-cancer therapies in the future.

Collaboration


Dive into the Yaoyu Chen's collaboration.

Top Co-Authors

Avatar

Shaoguang Li

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Cong Peng

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haojian Zhang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Shan

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Alan G. Rosmarin

UMass Memorial Health Care

View shared research outputs
Top Co-Authors

Avatar

Zhong-Fa Yang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Michael R. Green

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge