Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaqi Lv is active.

Publication


Featured researches published by Yaqi Lv.


Scientific Reports | 2016

Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

Zhu Jin; Yaqi Lv; Hui Cao; Jing Yao; Jianping Zhou; Wei He; Lifang Yin

Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.


International Journal of Pharmaceutics | 2015

Core–shell structured gel-nanocarriers for sustained drug release and enhanced antitumor effect

Wei He; Yaqi Lv; Yaping Zhao; Chaoran Xu; Zhu Jin; Chao Qin; Lifang Yin

The present paper attempted to develop temperature-sensitive and core-shell structured gel-nanocarriers (gel-NCs) for paclitaxel (PTX) with 12-hydroxystearic acid (12-HSA) as an organic gelator, which aims at sustaining drug release over time and thus improves the therapeutic effect. The gel-NCs were prepared by a mechanical mixing and high-pressure homogenization method. The gelation transition temperature (Tgel) of the organic phase contained in the cores of the gel-NCs was optimized by a stirring method. The gel-NCs were characterized in terms of the particle size, morphology and in vitro drug release. The in vivo studies, including the antitumor effects on H22 tumor-bearing mice, biocompatibility and toxicity in mice, were performed. Gel-NCs with approximately 170 nm were prepared successfully, and the gelation of the liquid cores at 37°C was achieved, while the amount of gelator was 3.75% (w/w). Due to the gelation of the cores, sustained drug release over time was obtained. Moreover, the PTX-loaded gel-NCs suppressed tumor growth more efficiently than the conventional nanocarriers with better in vivo biocompatibility and no toxicity to other healthy organs. In conclusion, the 12-HSA organogel-based NCs appear to be promising systems for the sustained release of active compounds for a long time and thus improve the therapeutic outcome.


International Journal of Pharmaceutics | 2015

Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability

Wei He; Ke Yang; Lifang Fan; Yaqi Lv; Zhu Jin; Shumin Zhu; Chao Qin; Yiao Wang; Lifang Yin

Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers.


International Journal of Pharmaceutics | 2015

Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity.

Chaoran Xu; Wei He; Yaqi Lv; Chao Qin; Lingjia Shen; Lifang Yin

A prodrug-based nanosystem obtained by formulating prodrug and nanotechnology into a system is one of the most promising strategies to enhance drug delivery for disease treatment. Herein, we report a new nanosystem based on HA-PTX conjugates (HA-PTX Ns), which penetrated across cell membranes into cytosol, thus enhancing paclitaxel (PTX) delivery. HA-PTX Ns were successfully obtained based on HA-PTX, and their average particle size was approximately 200 nm. Importantly, unlike other prodrug-based nanosystems, HA-PTX Ns obtained cellular entry without entrapment within the lysosomal-endosomal system by using pathways including clathrin-mediated endocytosis, microtubule-associated internalization, macropinocytosis and cholesterol-dependence. Due to significant accumulation in tumors, HA-PTX Ns had more than a 4-fold decrease in tumor volume on day 14 in contrast with PTX alone. In conclusion, HA-PTX Ns could enter cells, bypass the lysosomal-endosomal system and improve PTX delivery.


International Journal of Pharmaceutics | 2015

Shell-crosslinked hybrid nanoparticles for direct cytosolic delivery for tumor therapy

Wei He; Zhu Jin; Yaqi Lv; Hui Cao; Jing Yao; Jianping Zhou; Lifang Yin

To obtain efficient therapeutics, drug release into the cytosol is required because drug targets are often located in the cytosol or have active sites that require intracellular machinery in the cytosolic compartment. However, typical nanocarriers gain cellular entry by endocytic mechanisms, confining the internalized nanocarriers to the endosomal-lysosomal system, thus resulting in the rapid destruction of active drugs without release into the cytosol. Herein, hybrid nanoparticles (HNs) with a core-shell structure, which was based on nanoemulsion-templates stabilized by both β-lactoglobulin (β-LG) and lecithin, were developed. Additionally, its formation mechanism and structure were also studied. Importantly, the HNs could directly penetrate the cell membrane and enter the cytosol, without entrapment within the endosomal-lysosomal system via the lipid raft-like pathway, thus enhancing its antitumor activities. We therefore concluded that HNs are promising targeting delivery systems for drugs, especially for pharmaceutical proteins and gene-targeting drugs.


ACS Nano | 2018

Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells

Yaqi Lv; Chaoran Xu; Xiangmei Zhao; Chenshi Lin; Xin Yang; Xiaofei Xin; Li Zhang; Chao Qin; Xiaopeng Han; Lei Yang; Wei He; Lifang Yin

The tumor microenvironment (TME) plays a critical role in tumor initiation, progression, invasion, and metastasis. Therefore, a therapy that combines chemotherapeutic drugs with a TME modulator could be a promising route for cancer treatment. This paper reports a nanoplatform self-assembled from a hyaluronic acid (HA)-paclitaxel (PTX) (HA-PTX) prodrug and marimastat (MATT)-loaded thermosensitive liposomes (LTSLs) (MATT-LTSLs) for the dual targeting of the TME and cancer cells. Interestingly, the prodrug HA-PTX can self-assemble on both positively and negatively charged liposomes, forming hybrid nanoparticles (HNPs, 100 nm). Triggered by mild hyperthermia, HA-PTX/MATT-LTSLs HNPs rapidly release their payloads into the extracellular environment, and the released HA-PTX quickly enters 4T1 cells through a CD44-HA affinity. The HNPs possess promoted tumor accumulation (1.6-fold), exhibit deep tumor penetration, and significantly inhibit the tumor growth (10-fold), metastasis (100%), and angiogenesis (10-fold). Importantly, by targeting the TME and maintaining its integrity via inhibiting the expression and activity of matrix metalloproteinases (>5-fold), blocking the fibroblast activation by downregulating the TGF-β1 expression (5-fold) and suppressing the degradation of extracellular matrix, the HNPs allow for significant metastasis inhibition. Overall, these findings indicate that a prodrug of an HA-hydrophobic-active compound and liposomes can be self-assembled into a smart nanoplatform for the dual targeting of the TME and tumor cells and efficient combined treatment; additionally, the co-delivery of MATT and HA-PTX with the HNPs is a promising approach for the treatment of metastatic cancer. This study creates opportunities for fabricating multifunctional nanodevices and offers an efficient strategy for disease therapy.


Scientific Reports | 2017

Cytosolic co-delivery of miRNA-34a and docetaxel with core-shell nanocarriers via caveolae-mediated pathway for the treatment of metastatic breast cancer

Li Zhang; Xin Yang; Yaqi Lv; Xiaofei Xin; Chao Qin; Xiaopeng Han; Lei Yang; Wei He; Lifang Yin

Co-delivery of microRNAs and chemotherapeutic drugs into tumor cells is an attractive strategy for synergetic breast cancer therapy due to their complementary mechanisms. In this work, a core-shell nanocarrier coated by cationic albumin was developed to simultaneously deliver miRNA-34a and docetaxel (DTX) into breast cancer cells for improved therapeutic effect. The co-delivery nanocarriers showed a spherical morphology with an average particle size of 183.9 nm, and they efficiently protected miRNA-34a from degradation by RNase and serum. Importantly, the nanocarriers entered the cytosol via a caveolae-mediated pathway without entrapment in endosomes/lysosomes, thus improving the utilization of the cargo. In vitro, the co-delivery nanocarriers suppressed the expression of anti-apoptosis gene Bcl-2 at both transcription and protein levels, inhibited tumor cell migration and efficiently induced cell apoptosis and cytotoxicity. In vivo, the co-delivery nanocarriers prolonged the blood circulation of DTX, enhanced tumor accumulation of the cargo and significantly inhibited tumor growth and metastasis in 4T1-tumor bearing mice models. Taken together, the present nanocarrier co-loading with DTX and miRNA-34a is a new nanoplatform for the combination of insoluble drugs and gene/protein drugs and provides a promising strategy for the treatment of metastatic breast cancer.


Journal of Materials Chemistry B | 2017

Denatured protein stabilized drug nanoparticles: tunable drug state and penetration across the intestinal barrier

Wei He; Yiao Wang; Yaqi Lv; Qingqing Xiao; Ling Ye; Bo Cai; Chao Qin; Xiaopeng Han; Ting Cai; Lifang Yin

Nanosuspensions of drugs are nanosized colloidal dispersions of pure particles. In contrast to conventional nanoparticles, the particles in nanosuspensions feature 100% drug loading. Stiripentol (STP) is an effective drug for severe myoclonic epilepsy of infancy (SMEI); however, because of its low water solubility, high oral doses of STP, up to 50 mg per kg per day in two or three divided doses, must be administered to patients, compromising therapy outcomes. Here, we report STP nanosuspensions (STP-Ns) stabilized with denatured soybean protein isolate (SPI) as a stabilizer to promote the absorption of STP and thus improve therapeutic outcomes. STP-Ns with a drug loading of up to 50% (w/w) and a diameter of 150 nm were successfully prepared. Importantly, in the presence of denatured SPI as a stabilizer, the drug state in the nanosuspensions was tunable by drug loading: low drug loading resulted in the formation of amorphous drug nanoparticles while high drug loading greater than 3.22% (w/w) in formulation induced the formation of nanosuspensions with the coexistence of amorphous and crystalline drug. This new nanosuspension formulation was related to the fact that the protein-drug complex exhibited a much stronger affinity for the drug particles over the protein itself. Interestingly, via the transcytosis pathway, the STP-Ns penetrated across the intestinal barrier into the systemic circulation, with the duodenum as the predominant absorption site. The bioavailability of the STP-Ns was 4-fold as great as that of raw crystals. The discovery of this mechanism for the use of globular protein as a stabilizer for nanosuspensions provides a new route for the preparation of amorphous drug nanoparticles. This work offers a new strategy to widen the application of globular protein and nanosuspensions of insoluble active compounds in drug delivery.


Advanced Science | 2017

Rod‐Shaped Active Drug Particles Enable Efficient and Safe Gene Delivery

Xiaofei Xin; Xue Pei; Xin Yang; Yaqi Lv; Li Zhang; Wei He; Lifang Yin

Abstract Efficient microRNAs (miRNA) delivery into cells is a promising strategy for disease therapy, but is a major challenge because the available conventional nonviral vectors have significant drawbacks. In particular, after these vectors are entrapped in lysosomes, the escape efficiency of genes from lysosomes into the cytosol is less than 2%. Here, a novel approach for lethal‐7a (let‐7a) replacement therapy using rod‐shaped active pure drug nanoparticles (≈130 nm in length, PNPs) with a dramatically high drug‐loading of ≈300% as vectors is reported. Importantly, unlike other vectors, the developed PNPs/let‐7a complexes (≈178 nm, CNPs) can enter cells and bypass the lysosomal route to localize to the cytosol, achieving efficient intracellular delivery of let‐7a and a 50% reduction in expression of the target protein (KRAS). Also, CNPs prolong the t 1/2 of blood circulation by ≈threefold and increase tumor accumulation by ≈1.5–2‐fold, resulting in significantly improved antitumor efficacies. Additionally, no damage to normal organs is observed following systemic injection of CNPs. In conclusion, rod‐shaped active PNPs enable efficient and safe delivery of miRNA with synergistic treatment for disease. This nanoplatform would also offer a viable strategy for the potent delivery of proteins and peptides in vitro and in vivo.


Theranostics | 2018

Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis

Yaqi Lv; Xiangmei Zhao; Lidan Zhu; Sijia Li; Qingqing Xiao; Wei He; Lifang Yin

Treatment for metastatic cancer is a great challenge throughout the world. Commonly, directed inhibition of extracellular matrix metalloproteinases (MMPs) secreted by cancer cells can reduce metastasis. Here, a novel nanoplatform (HPMC NPs) assembled from hyaluronic acid (HA)-paclitaxel (PTX) prodrug and marimastat (MATT)/β-casein (CN) complexes was established to cure a 4T1 metastatic cancer model via targeting CD44 and intracellular, rather than extracellular, MMPs. Methods: HPMC NPs were prepared by assembling the complexes and prodrug under ultrasonic treatment, which the interaction between them was evaluated by förster resonance energy transfer, circular dichroism and fluorescence spectra. The developed nanoplatform was characterized via dynamic light scattering and transmission electron microscopy, and was evaluated in terms of MMP-sensitive release and stability. Subsequently, the cellular uptake, trafficking, and in vitro invasion were studied by flow cytometry, confocal laser microscopy and transwell assay. MMP expression and activity was determined by western blotting and gelatin zymography. Finally, the studies of biodistribution and antitumor efficacy in vivo were performed in a mouse 4T1 tumor breast model, followed by in vivo safety study in normal mouse. Results: The interaction between the prodrug and complexes is strong with a high affinity, resulting in the assembly of these two components into hybrid nanoparticles (250 nm). Compared with extracellular incubation with MATT, HPMC NP treatment markedly reduced the expression (100%) and activity (50%) of MMPs in 4T1 cells and in the tumor. HPMC NPs exhibited 1.4-fold tumor accumulation, inhibited tumor-growth by >8-fold in volume with efficient apoptosis and proliferation, and suppressed metastasis (>5-fold) and angiogenesis (>3-fold). Overall, HPMC NPs were efficient in metastatic cancer therapy. Conclusions: According to the assembly of polymer prodrug and protein-drug complexes, this study offers a new strategy for constructing nanoparticles for targeted drug delivery, biomedical imaging, and combinatorial treatment. Importantly, via inhibition of intracellular MMPs, metastasis and angiogenesis can be potently blocked, benefiting the rational design of nanomedicine for cancer treatment.

Collaboration


Dive into the Yaqi Lv's collaboration.

Top Co-Authors

Avatar

Chunyong Wu

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Ling Ye

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge