Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaqin Xu is active.

Publication


Featured researches published by Yaqin Xu.


PLOS ONE | 2010

Proinflammatory Phenotype and Increased Caveolin-1 in Alveolar Macrophages with Silenced CFTR mRNA

Yaqin Xu; Anja Krause; Hiroko Hamai; Ben-Gary Harvey; Tilla S. Worgall; Stefan Worgall

The inflammatory milieu in the respiratory tract in cystic fibrosis (CF) has been linked to the defective expression of the cystic transmembrane regulator (CFTR) in epithelial cells. Alveolar macrophages (AM), important contibutors to inflammatory responses in the lung, also express CFTR. The present study analyzes the phenotype of human AM with silenced CFTR. Expression of CFTR mRNA and the immature form of the CFTR protein decreased 100-fold and 5.2-fold, respectively, in AM transfected with a CFTR specific siRNA (CFTR-siRNA) compared to controls. Reduction of CFTR expression in AM resulted in increased secretion of IL-8, increased phosphorylation of NF-κB, a positive regulator of IL-8 expression, and decreased expression of IκB-α, the inhibitory protein of NF-κB activation. AM with silenced CFTR expression also showed increased apoptosis. We hypothesized that caveolin-1 (Cav1), a membrane protein that is co-localized with CFTR in lipid rafts and that is related to inflammation and apoptosis in macrophages, may be affected by decreased CFTR expression. Messenger RNA and protein levels of Cav1 were increased in AM with silenced CFTR. Expression and transcriptional activity of sterol regulatory element binding protein (SREBP), a negative transcriptional regulator of Cav1, was decreased in AM with silenced CFTR, but total and free cholesterol mass did not change. These findings indicate that silencing of CFTR in human AM results in an inflammatory phenotype and apoptosis, which is associated to SREBP-mediated regulation of Cav1.


PLOS ONE | 2013

Adenovirus-Based Vaccine with Epitopes Incorporated in Novel Fiber Sites to Induce Protective Immunity against Pseudomonas aeruginosa

Anurag Sharma; Anja Krause; Yaqin Xu; Biin Sung; Wendy Wu; Stefan Worgall

Adenovirus (Ad) vector-based vaccines displaying pathogen-derived epitopes on Ad capsid proteins can elicit anti-pathogen immunity. This approach seems to be particularly efficient with epitopes incorporated into the Ad fiber protein. Here, we explore epitope insertion into various sites of the Ad fiber to elicit epitope-specific immunity. Ad vectors expressing the 14-mer Pseudomonas aeruginosa immune-dominant outer membrane protein F (OprF) epitope 8 (Epi8) in five distinct sites of the Ad5 fiber, loops CD (AdZ.F(CD)Epi8), DE (AdZ.F(DE)Epi8), FG (AdZ.F(FG)Epi8), HI (AdZ.F(HI)Epi8) and C terminus (AdZ.F(CT)Epi8), or the hexon HVR5 loop (AdZ.HxEpi8) were compared in their capacity to elicit anti-P. aeruginosa immunity to AdOprF, an Ad expressing the entire OprF protein. Intramuscular immunization of BALB/c mice with AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8 elicited higher anti-OprF humoral and cellular CD4 and CD8 responses as well as enhanced protection against respiratory infection with P. aeruginosa compared to immunization with AdZ.F(CD)Epi8, AdZ.F(DE)Epi8, AdZ.F(CT)Epi8 or AdZ.HxEpi8. Importantly, repeat administration of the fiber- and hexon-modified Ad vectors boosted the OprF-specific humoral immune response in contrast to immunization with AdOprF. Strikingly, following three doses of AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8 anti-OprF immunity surpassed that induced by AdOprF. Furthermore, in the presence of anti-Ad5 immunity, immunization with AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8, but not with AdOprF, induced protective immunity against P. aeruginosa. This suggests that incorporation of epitopes into distinct sites of the Ad fiber is a promising vaccine strategy.


Vaccine | 2011

Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF

Anja Krause; Wen Zhu Whu; Yaqin Xu; Ju Joh; Ronald G. Crystal; Stefan Worgall

Replication-deficient adenoviral (Ad) vectors are an attractive platform for a vaccine against lung infections caused by Pseudomonas aeruginosa. Ad vectors based on non-human serotypes have been developed to circumvent the problem of pre-existing anti-Ad immunity in humans. The present study analyzes the anti-P. aeruginosa systemic and lung mucosal immunity elicited by a non-human primate-based AdC7 vector expressing the outer membrane protein F (AdC7OprF) of P. aeruginosa. Intramuscular immunization of mice with AdC7OprF induced similar levels of serum and mucosal anti-OprF IgG and increased levels of anti-OprF IgA in lung epithelial lining fluid (ELF) compared to immunization with a human serotype Ad5OprF vector (p>0.05). OprF-specific INF-γ in splenic T cells stimulated with OprF-pulsed syngeneic splenic dendritic cells (DC) was similar following immunization with AdC7OprF compared to Ad5OprF (p>0.05). In contrast, OprF-specific INF-γ responses in lung T cells stimulated with either spleen or lung DC were increased following immunization with AdC7OprF compared to Ad5OprF (p<0.05). Interestingly, direct administration of AdC7OprF to the respiratory tract resulted in an increase of OprF-specific IgG in serum, OprF-specific IgG and IgA in lung ELF, and OprF-specific INF-γ in lung T-cells compared to immunization with Ad5OprF, and survival following challenge with a lethal dose of P. aeruginosa. These data demonstrate that systemic or lung mucosal immunization with an AdC7-based vaccine vector induces superior pulmonary humoral and cellular anti-transgene immunity compared to immunization with an Ad5-based vector and favors AdC7-based vectors as vaccines to induce lung mucosal immunity.


Respiratory Research | 2009

Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells

Yaqin Xu; Christine Tertilt; Anja Krause; Luis E. N. Quadri; Ronald G. Crystal; Stefan Worgall

BackgroundCystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Infections of the respiratory tract are a hallmark in CF. The host immune responses in CF are not adequate to eradicate pathogens, such as P. aeruginosa. Dendritic cells (DC) are crucial in initiation and regulation of immune responses. Changes in DC function could contribute to abnormal immune responses on multiple levels. The role of DC in CF lung disease remains unknown.MethodsThis study investigated the expression of CFTR gene in bone marrow-derived DC. We compared the differentiation and maturation profile of DC from CF and wild type (WT) mice. We analyzed the gene expression levels in DC from naive CF and WT mice or following P. aeruginosa infection.ResultsCFTR is expressed in DC with lower level compared to lung tissue. DC from CF mice showed a delayed in the early phase of differentiation. Gene expression analysis in DC generated from naive CF and WT mice revealed decreased expression of Caveolin-1 (Cav1), a membrane lipid raft protein, in the CF DC compared to WT DC. Consistently, protein and activity levels of the sterol regulatory element binding protein (SREBP), a negative regulator of Cav1 expression, were increased in CF DC. Following exposure to P. aeruginosa, expression of 3β-hydroxysterol-Δ7 reductase (Dhcr7) and stearoyl-CoA desaturase 2 (Scd2), two enzymes involved in the lipid metabolism that are also regulated by SREBP, was less decreased in the CF DC compared to WT DC.ConclusionThese results suggest that CFTR dysfunction in DC affects factors involved in membrane structure and lipid-metabolism, which may contribute to the abnormal inflammatory and immune response characteristic of CF.


American Journal of Respiratory Cell and Molecular Biology | 2013

Low Sphingosine-1–Phosphate Impairs Lung Dendritic Cells in Cystic Fibrosis

Yaqin Xu; Anja Krause; Maria P. Limberis; Tilla S. Worgall; Stefan Worgall

Dysfunction of the cystic fibrosis transmembrane regulator (CFTR) leads to chronic inflammation and infection of the respiratory tract. The role of CFTR for cells of the pulmonary immune system is only partly understood. The present study analyzes the phenotype and immune stimulatory capacity of lung dendritic cells (DCs) from CFTR knockout (CF) mice. Total numbers of conventional DCs, plasmacytoid DCs, and CD103-positive DCs were lower in CF mice compared with wild-type (WT) control mice, as was the expression of major histocompatibility complex class II molecules (MHCII), CD40, and CD86. After pulmonary infection with respiratory syncytial virus, DC numbers increased in WT mice but not in CF mice, and the T cell-stimulatory capacity of CF DCs was impaired. The culture of CF lung DCs with bronchoalveolar lavage fluid (BALF) from WT mice increased the expression of MHCII, CD40, and CD86. The supplementation of CF BALF with sphingosine-1-phosphate (S1P), a mediator of immune cell migration and activation that is decreased in CF BALF, rescued the reduced expression of MHCII and CD40 in WT lung DCs and human blood DCs. These findings suggest that DCs are impaired in the CF lung, and that altered S1P affects lung DC function. These findings provide a novel link between defective CFTR and pulmonary innate immune dysfunction in CF.


Virology Journal | 2011

Absence of vaccine-enhanced RSV disease and changes in pulmonary dendritic cells with adenovirus-based RSV vaccine

Anja Krause; Yaqin Xu; Sara Ross; Wendy Wu; Ju Joh; Stefan Worgall

The development of a vaccine against respiratory syncytial virus (RSV) has been hampered by the risk for vaccine-enhanced RSV pulmonary disease induced by immunization with formalin-inactivated RSV (FIRSV). This study focuses on the evaluation of vaccine-enhanced pulmonary disease following immunization with AdF.RGD, an integrin-targeted adenovirus vector that expresses the RSV F protein and includes an RGD (Arg-Gly-Asp) motif. Immunization of BALB/c mice with AdF.RGD, resulted in anti-RSV protective immunity and induced increased RSV-specific IFN-γ T cell responses compared to FIRSV. RSV infection 5 wk after immunization with FIRSV induced pulmonary inflammatory responses in the lung, that was not observed with AdF.RGD. Additionally, In the FIRSV-immunized mice following infection with RSV, pulmonary DC increased and Tregs decreased. This suggests that distinct responses of pulmonary DC and Tregs are a features of vaccine-enhanced RSV disease and that immunization with an RGD-modified Ad vaccine does not trigger vaccine-enhanced disease.


Molecular Therapy | 2010

Overexpression of Sonic Hedgehog in the Lung Mimics the Effect of Lung Injury and Compensatory Lung Growth on Pulmonary Sca-1 and CD34 Positive Cells

Anja Krause; Yaqin Xu; Ju Joh; Ralf Hubner; Austen Gess; Thomas Ilic; Stefan Worgall

Cells localized in the bronchioalveolar duct junction of the murine lung have been identified as potential bronchioalveolar stem cells. Based on the surface marker expression, two main phenotypes have been proposed: Sca-1(+), CD34(+), CD45(-), Pecam(-) and Sca-1(low), CD34(-) CD45(-), Pecam(-) cells. An increase in the number of Sca-1(+), CD34(+) CD45(-), Pecam(-) cells and activation of the sonic hedgehog (Shh) pathway was observed following unilateral pneumonectomy and naphthalene-induced airway injury. Overexpression of Shh in the respiratory tract also resulted in an increase of this cell population. Syngeneic transplantation of beta-galactosidase-expressing bone marrow cells demonstrated that the increase of Sca-1(+), CD34(+), CD45(-), Pecam(-) cells in the lung was a result of local proliferation. Intratracheal administration of purified Shh-stimulated Sca-1(+), CD45(-), Pecam(-) cells coexpressing CD34 to syngeneic mice following pneumonectomy resulted in engraftment of these cells predominantly in the airways for up to 3 months, whereas Sca-1(-), CD45(-), Pecam(-) cells did not engraft. This study suggests that local Sca-1(+), CD34(+), CD45(-), Pecam(-) cells are stimulated during compensatory lung growth, following airway injury and overexpression of Shh and have some potential to engraft in the airways, without showing clonal properties in vivo.


Cellular Microbiology | 2016

Regulation of the Coxsackie and adenovirus receptor expression is dependent on cystic fibrosis transmembrane regulator in airway epithelial cells

Anurag Sharma; Yaqin Xu; Biin Sung; Vincent Ct; Tilla S. Worgall; Stefan Worgall

The coxsackievirus and adenovirus receptor (CAR), in addition to serving as viral receptor, is a component of tight junctions and plays an important role in tissue homeostasis. Defects in the cystic fibrosis transmembrane regulator (CFTR) in lung epithelial cells are linked to inflammation and susceptibility for respiratory tract infections. Here, we demonstrate that CAR expression and infectivity with adenovirus (Ad) are increased in cystic fibrosis airway epithelial cells. Inhibition of CFTR or histone deacetylase (HDAC) enhanced CAR expression while CFTR overexpression or restoration of the diminished HDAC activity in cystic fibrosis cells reduced CAR expression. This connects the CFTR to CAR expression and infectivity with adenovirus through HDAC.


Archive | 2012

Immune Dysfunction in Cystic Fibrosis

Yaqin Xu; Stefan Worgall

Absence of the cystic fibrosis transmembrane regulator (CFTR) function leads to chronic lung disease characterized by inflammation and persistent infections. The mechanisms for the increased susceptibility of the respiratory tract for infections in CF are most likely complex and only partially understood. Most attention has been focused on the effect of the defective expression of CFTR in epithelial cells and submucosal gland cells and the increased susceptibility of the respiratory tract to infections was was mostly thought to be related to the abnormal chloride channel function (Welsh MJ, 2011, Ratjen F 2003). However, numerous studies over the past years have shown that the absence of CFTR affects the immune system and that dysfunctional immune responses contribute to pathological processes in the CF lung. In addition, it has become increasingly evident that the chloride channel dysfunction alone cannot completely explain the pathology of CF lung disease and that other pathways known to be regulated by CFTR play a role in the immune dysregulation in the CF lung (Mehta A 2008). This chapter reviews both soluble factors in the CF milieu that modify immune cell function and specific alterations in the cellular components of the innate and adaptive immune system that contribute to the impaired immune defense in CF lung disease.


Cellular Microbiology | 2017

Regulation of the Coxsackie and adenovirus receptor expression is dependent on cystic fibrosis transmembrane regulator in airway epithelial cells: CFTR regulates CAR expression

Anurag Sharma; Yaqin Xu; Biin Sung; C. Theresa Vincent; Tilla S. Worgall; Stefan Worgall

The coxsackievirus and adenovirus receptor (CAR), in addition to serving as viral receptor, is a component of tight junctions and plays an important role in tissue homeostasis. Defects in the cystic fibrosis transmembrane regulator (CFTR) in lung epithelial cells are linked to inflammation and susceptibility for respiratory tract infections. Here, we demonstrate that CAR expression and infectivity with adenovirus (Ad) are increased in cystic fibrosis airway epithelial cells. Inhibition of CFTR or histone deacetylase (HDAC) enhanced CAR expression while CFTR overexpression or restoration of the diminished HDAC activity in cystic fibrosis cells reduced CAR expression. This connects the CFTR to CAR expression and infectivity with adenovirus through HDAC.

Collaboration


Dive into the Yaqin Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria P. Limberis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge