Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaron Shav-Tal is active.

Publication


Featured researches published by Yaron Shav-Tal.


Cell | 2004

From silencing to gene expression: Real-time analysis in single cells

Susan M. Janicki; Toshiro Tsukamoto; Simone E Salghetti; William P. Tansey; Ravi Sachidanandam; Kannanganattu V. Prasanth; Thomas Ried; Yaron Shav-Tal; Edouard Bertrand; Robert H. Singer; David L. Spector

We have developed an inducible system to visualize gene expression at the levels of DNA, RNA and protein in living cells. The system is composed of a 200 copy transgene array integrated into a euchromatic region of chromosome 1 in human U2OS cells. The condensed array is heterochromatic as it is associated with HP1, histone H3 methylated at lysine 9, and several histone methyltransferases. Upon transcriptional induction, HP1alpha is depleted from the locus and the histone variant H3.3 is deposited suggesting that histone exchange is a mechanism through which heterochromatin is transformed into a transcriptionally active state. RNA levels at the transcription site increase immediately after the induction of transcription and the rate of synthesis slows over time. Using this system, we are able to correlate changes in chromatin structure with the progression of transcriptional activation allowing us to obtain a real-time integrative view of gene expression.


Nature Structural & Molecular Biology | 2007

In vivo dynamics of RNA polymerase II transcription

Xavier Darzacq; Yaron Shav-Tal; Valeria de Turris; Yehuda Brody; Shailesh M. Shenoy; Robert D Phair; Robert H. Singer

We imaged transcription in living cells using a locus-specific reporter system, which allowed precise, single-cell kinetic measurements of promoter binding, initiation and elongation. Photobleaching of fluorescent RNA polymerase II revealed several kinetically distinct populations of the enzyme interacting with a specific gene. Photobleaching and photoactivation of fluorescent MS2 proteins used to label nascent messenger RNAs provided sensitive elongation measurements. A mechanistic kinetic model that fits our data was validated using specific inhibitors. Polymerases elongated at 4.3 kilobases min−1, much faster than previously documented, and entered a paused state for unexpectedly long times. Transcription onset was inefficient, with only 1% of polymerase-gene interactions leading to completion of an mRNA. Our systems approach, quantifying both polymerase and mRNA kinetics on a defined DNA template in vivo with high temporal resolution, opens new avenues for studying regulation of transcriptional processes in vivo.


FEBS Letters | 2002

PSF and p54nrb/NonO – multi-functional nuclear proteins

Yaron Shav-Tal; Dov Zipori

Proteins are often referred to in accordance with the activity with which they were first associated or the organelle in which they were initially identified. However, a variety of nuclear factors act in multiple molecular reactions occurring simultaneously within the nucleus. This review describes the functions of the nuclear factors PSF (polypyrimidine tract‐binding protein‐associated splicing factor) and p54nrb/NonO. PSF was initially termed a splicing factor due to its association with the second step of pre‐mRNA splicing while p54nrb/NonO was thought to participate in transcriptional regulation. Recent evidence shows that the simplistic categorization of PSF and its homolog p54nrb/NonO to any single nuclear activity is not possible and in fact these proteins exhibit multi‐functional characteristics in a variety of nuclear processes.


Nature Methods | 2011

A transgenic mouse for in vivo detection of endogenous labeled mRNA.

Timothée Lionnet; Kevin Czaplinski; Xavier Darzacq; Yaron Shav-Tal; Amber L. Wells; Jeffrey A. Chao; Hye Yoon Park; Valeria de Turris; Melissa Lopez-Jones; Robert H. Singer

Live-cell single mRNA imaging is a powerful tool but has been restricted in higher eukaryotes to artificial cell lines and reporter genes. We describe an approach that enables live-cell imaging of single endogenous labeled mRNA molecules transcribed in primary mammalian cells and tissue. We generated a knock-in mouse line with an MS2 binding site (MBS) cassette targeted to the 3′ untranslated region of the essential ββ-actin gene. As β-actin–MBS was ubiquitously expressed, we could uniquely address endogenous mRNA regulation in any tissue or cell type. We simultaneously followed transcription from the β-actin alleles in real time and observed transcriptional bursting in response to serum stimulation with precise temporal resolution. We tracked single endogenous labeled mRNA particles being transported in primary hippocampal neurons. The MBS cassette also enabled high-sensitivity fluorescence in situ hybridization (FISH), allowing detection and localization of single β-actin mRNA molecules in various mouse tissues.


PLOS Biology | 2011

The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing

Yehuda Brody; Noa Neufeld; Nicole I. Bieberstein; Sebastien Z. Causse; Eva-Maria Böhnlein; Karla M. Neugebauer; Xavier Darzacq; Yaron Shav-Tal

Kinetic analysis shows that RNA polymerase elongation kinetics are not modulated by co-transcriptional splicing and that post-transcriptional splicing can proceed at the site of transcription without the presence of the polymerase.


Journal of Cell Biology | 2006

Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells

Xavier Darzacq; Nupur Kittur; Sujayita Roy; Yaron Shav-Tal; Robert H. Singer; U. Thomas Meier

Mammalian H/ACA RNPs are essential for ribosome biogenesis, premessenger RNA splicing, and telomere maintenance. These RNPs consist of four core proteins and one RNA, but it is not known how they assemble. By interrogating the site of H/ACA RNA transcription, we dissected their biogenesis in single cells and delineated the role of the non-core protein NAF1 in the process. NAF1 and all of the core proteins except GAR1 are recruited to the site of transcription. NAF1 binds one of the core proteins, NAP57, and shuttles between nucleus and cytoplasm. Both proteins are essential for stable H/ACA RNA accumulation. NAF1 and GAR1 bind NAP57 competitively, suggesting a sequential interaction. Our analyses indicate that NAF1 binds NAP57 and escorts it to the nascent H/ACA RNA and that GAR1 then replaces NAF1 to yield mature H/ACA RNPs in Cajal bodies and nucleoli.


Nature Methods | 2010

Single-allele analysis of transcription kinetics in living mammalian cells

Sharon Yunger; Liat Rosenfeld; Yuval Garini; Yaron Shav-Tal

We generated a system for in vivo visualization and analysis of mammalian mRNA transcriptional kinetics of single alleles in real time, using single-gene integrations. We obtained high-resolution transcription measurements of a single cyclin D1 allele under endogenous or viral promoter control, including quantification of temporal kinetics of transcriptional bursting, promoter firing, nascent mRNA numbers and transcription rates during the cell cycle, and in relation to DNA replication.


Nature Reviews Molecular Cell Biology | 2004

Imaging gene expression in single living cells

Yaron Shav-Tal; Robert H. Singer; Xavier Darzacq

Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time.


Journal of Cell Science | 2010

The life of an mRNA in space and time

Ya'ara Ben-Ari; Yehuda Brody; Noa Kinor; Amir Mor; Toshiro Tsukamoto; David L. Spector; Robert H. Singer; Yaron Shav-Tal

Nuclear transcribed genes produce mRNA transcripts destined to travel from the site of transcription to the cytoplasm for protein translation. Certain transcripts can be further localized to specific cytoplasmic regions. We examined the life cycle of a transcribed β-actin mRNA throughout gene expression and localization, in a cell system that allows the in vivo detection of the gene locus, the transcribed mRNAs and the cytoplasmic β-actin protein that integrates into the actin cytoskeleton. Quantification showed that RNA polymerase II elongation progressed at a rate of 3.3 kb/minute and that transactivator binding to the promoter was transient (40 seconds), and demonstrated the unique spatial structure of the coding and non-coding regions of the integrated gene within the transcription site. The rates of gene induction were measured during interphase and after mitosis, demonstrating that daughter cells were not synchronized in respect to transcription initiation of the studied gene. Comparison of the spatial and temporal kinetics of nucleoplasmic and cytoplasmic mRNA transport showed that the β-actin-localization response initiates from the existing cytoplasmic mRNA pool and not from the newly synthesized transcripts arising after gene induction. It was also demonstrated that mechanisms of random movement were predominant in mediating the efficient translocation of mRNA in the eukaryotic cell.


Genes & Development | 2011

The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1

Christine A. Hodge; Elizabeth J. Tran; Kristen N. Noble; Abel R. Alcázar-Román; Rakefet Ben-Yishay; John J. Scarcelli; Andrew W. Folkmann; Yaron Shav-Tal; Susan R. Wente; Charles N. Cole

Nuclear export of messenger RNA (mRNA) occurs by translocation of mRNA/protein complexes (mRNPs) through nuclear pore complexes (NPCs). The DEAD-box protein Dbp5 mediates export by triggering removal of mRNP proteins in a spatially controlled manner. This requires Dbp5 interaction with Nup159 in NPC cytoplasmic filaments and activation of Dbp5s ATPase activity by Gle1 bound to inositol hexakisphosphate (IP(6)). However, the precise sequence of events within this mechanism has not been fully defined. Here we analyze dbp5 mutants that alter ATP binding, ATP hydrolysis, or RNA binding. We found that ATP binding and hydrolysis are required for efficient Dbp5 association with NPCs. Interestingly, mutants defective for RNA binding are dominant-negative (DN) for mRNA export in yeast and human cells. We show that the DN phenotype stems from competition with wild-type Dbp5 for Gle1 at NPCs. The Dbp5-Gle1 interaction is limiting for export and, importantly, can be independent of Nup159. Fluorescence recovery after photobleaching experiments in yeast show a very dynamic association between Dbp5 and NPCs, averaging <1 sec, similar to reported NPC translocation rates for mRNPs. This work reveals critical steps in the Gle1-IP(6)/Dbp5/Nup159 cycle, and suggests that the number of remodeling events mediated by a single Dbp5 is limited.

Collaboration


Dive into the Yaron Shav-Tal's collaboration.

Top Co-Authors

Avatar

Robert H. Singer

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dov Zipori

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Darzacq

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge