Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaroslav Shuba is active.

Publication


Featured researches published by Yaroslav Shuba.


Nature Reviews Cancer | 2011

Calcium in tumour metastasis: new roles for known actors.

Natalia Prevarskaya; Roman Skryma; Yaroslav Shuba

In most cases, metastasis, not the primary tumour per se, is the main cause of mortality in cancer patients. In order to effectively escape the tumour, enter the circulation and establish secondary growth in distant organs cancer cells must develop an enhanced propensity to migrate. The ubiquitous second messenger Ca2+ is a crucial regulator of cell migration. Recently, a number of known molecular players in cellular Ca2+ homeostasis, including calcium release-activated calcium channel protein 1 (ORAI1), stromal interaction molecule 1 (STIM1) and transient receptor potential (TRP) channels, have been implicated in tumour cell migration and the metastatic cell phenotype. We discuss how these developments have increased our understanding of the Ca2+ dependence of pro-metastatic behaviours.


Cancer Cell | 2002

Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells

Fabien Vanden Abeele; Roman Skryma; Yaroslav Shuba; Fabien Van Coppenolle; Christian Slomianny; Morad Roudbaraki; Brigitte Mauroy; Frank Wuytack; Natalia Prevarskaya

Antiapoptotic oncoprotein Bcl-2 has extramitochondrial actions due to its localization on the endoplasmic reticulum (ER); however, the specific mechanisms of such actions remain unclear. Here we show that Bcl-2 overexpression in LNCaP prostate cancer epithelial cells results in downregulation of store-operated Ca(2+) current by decreasing the number of functional channels and inhibiting ER Ca(2+) uptake through a reduction in the expression of calreticulin and SERCA2b, two key proteins controlling ER Ca(2+) content. Furthermore, we demonstrate that Ca(2+) store depletion by itself is not sufficient to induce apoptosis in Bcl-2 overexpressing cells, and that sustained Ca(2+) entry via activated store-operated channels (SOCs) is required as well. Our data therefore suggest the pivotal role of SOCs in apoptosis and cancer progression.


Trends in Molecular Medicine | 2010

Ion channels and the hallmarks of cancer

Natalia Prevarskaya; Roman Skryma; Yaroslav Shuba

Plasma membrane (PM) ion channels contribute to virtually all basic cellular processes and are also involved in the malignant phenotype of cancer cells. Here, we review the role of ion channels in cancer in the context of their involvement in the defined hallmarks of cancer: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth signals, 3) evasion of programmed cell death (apoptosis), 4) limitless replicative potential, 5) sustained angiogenesis and 6) tissue invasion and metastasis. Recent studies have indicated that the contribution of specific ion channels to these hallmarks varies for different types of cancer. Therefore, to determine the importance of ion channels as targets for cancer diagnosis and treatment their expression, function and regulation must be assessed for each cancer.


Journal of Clinical Investigation | 2007

Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function.

Gabriel Bidaux; Matthieu Flourakis; Stéphanie Thebault; Alexander Zholos; Benjamin Beck; Dimitra Gkika; Morad Roudbaraki; Jean-Louis Bonnal; Brigitte Mauroy; Yaroslav Shuba; Roman Skryma; Natalia Prevarskaya

In recent years, the transient receptor potential melastatin member 8 (TRPM8) channel has emerged as a promising prognostic marker and putative therapeutic target in prostate cancer (PCa). However, the mechanisms of prostate-specific regulation and functional evolution of TRPM8 during PCa progression remain unclear. Here we show, for the first time to our knowledge, that only secretory mature differentiated human prostate primary epithelial (PrPE) luminal cells expressed functional plasma membrane TRPM8 ((PM)TRPM8) channels. Moreover, PCa epithelial cells obtained from in situ PCa were characterized by a significantly stronger (PM)TRPM8-mediated current than that in normal cells. This (PM)TRPM8 activity was abolished in dedifferentiated PrPE cells that had lost their luminal secretory phenotype. However, we found that in contrast to (PM)TRPM8, endoplasmic reticulum TRPM8 ((ER)TRPM8) retained its function as an ER Ca(2+) release channel, independent of cell differentiation. We hypothesize that the constitutive activity of (ER)TRPM8 may result from the expression of a truncated TRPM8 splice variant. Our study provides insight into the role of TRPM8 in PCa progression and suggests that TRPM8 is a potentially attractive target for therapeutic intervention: specific inhibition of either (ER)TRPM8 or (PM)TRPM8 may be useful, depending on the stage and androgen sensitivity of the targeted PCa.


Journal of Biological Chemistry | 2005

Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

Stéphanie Thebault; Loı̋c Lemonnier; Gabriel Bidaux; Matthieu Flourakis; Alexis Bavencoffe; Dimitri Gordienko; Morad Roudbaraki; Philippe Delcourt; Yuri Panchin; Yaroslav Shuba; Roman Skryma; Natalia Prevarskaya

Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell line, LNCaP. In this study, we show that despite such expression, LNCaP cells respond to cold/menthol stimulus by membrane current (Icold/menthol) that shows inward rectification and high Ca2+ selectivity, which are dramatically different properties from “classical” TRPM8-mediated Icold/menthol. Yet, silencing of endogenous TRPM8 mRNA by either antisense or siRNA strategies suppresses both Icold/menthol and TRPM8 protein in LNCaP cells. We demonstrate that these puzzling results arise from TRPM8 localization not in the plasma, but in the endoplasmic reticulum (ER) membrane of LNCaP cells, where it supports cold/menthol/icilin-induced Ca2+ release from the ER with concomitant activation of plasma membrane (PM) store-operated channels (SOC). In contrast, GFP-tagged TRPM8 heterologously expressed in HEK-293 cells target the PM. We also demonstrate that TRPM8 expression and the magnitude of SOC current associated with it are androgen-dependent. Our results suggest that the TRPM8 may be an important new ER Ca2+ release channel, potentially involved in a number of Ca2+- and store-dependent processes in prostate cancer epithelial cells, including those that are important for prostate carcinogenesis, such as proliferation and apoptosis.


The Journal of Physiology | 2000

Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis

Roman Skryma; Pascal Mariot; Xuefen Le Bourhis; Fabien Van Coppenolle; Yaroslav Shuba; Fabien Vanden Abeele; Guillaume Legrand; Sandrine Humez; Bénoni Boilly; Natalia Prevarskaya

1 In the present study, we investigated the mechanisms involved in the induction of apoptosis by the Ca2+‐ATPase inhibitor thapsigargin (TG), in androgen‐sensitive human prostate cancer LNCaP cells. 2 Exposure of fura‐2‐loaded LNCaP cells to TG in the presence of extracellular calcium produced an increase in intracellular Ca2+, the first phase of which was associated with depletion of intracellular stores and the second one with consecutive extracellular Ca2+ entry through plasma membrane, store‐operated Ca2+ channels (SOCs). 3 For the first time we have identified and characterized the SOC‐mediated membrane current (Istore) in prostate cells using whole‐cell, cell‐attached, and perforated patch‐clamp techniques, combined with fura‐2 microspectrofluorimetric and Ca2+‐imaging measurements. 4 I store in LNCaP cells lacked voltage‐dependent gating and displayed an inwardly rectifying current‐voltage relationship. The unitary conductance of SOCs with 80 mM Ca2+ as a charge carrier was estimated at 3.2 ± 0.4 pS. The channel has a high selectivity for Ca2+ over monovalent cations and is inhibited by Ni2+ (0.5–3 mM) and La3+ (1 μM). 5 Treatment of LNCaP cells with TG (0.1 μM) induced apoptosis as judged from morphological changes. Decreasing extracellular free Ca2+ to 200 nM or adding 0.5 mM Ni2+ enhanced TG‐induced apoptosis. 6 The ability of TG to induce apoptosis was not reduced by loading the cells with intracellular Ca2+ chelator (BAPTA‐AM). 7 These results indicate that in androgen‐sensitive prostate cancer cells the depletion of intracellular Ca2+ stores may trigger apoptosis but that there is no requirement for the activation of store‐activated Ca2+ current and sustained Ca2+ entry in induction and development of programmed cell death.


Cell Death and Disease | 2010

Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells

Matthieu Flourakis; V'yacheslav Lehen'kyi; Benjamin Beck; Maylis Raphaël; Muriel Vandenberghe; Fabien Vanden Abeele; Morad Roudbaraki; Gilbert Lepage; Brigitte Mauroy; Christoph Romanin; Yaroslav Shuba; Roman Skryma; Natalia Prevarskaya

The molecular nature of calcium (Ca2+)-dependent mechanisms and the ion channels having a major role in the apoptosis of cancer cells remain a subject of debate. Here, we show that the recently identified Orai1 protein represents the major molecular component of endogenous store-operated Ca2+ entry (SOCE) in human prostate cancer (PCa) cells, and constitutes the principal source of Ca2+ influx used by the cell to trigger apoptosis. The downregulation of Orai1, and consequently SOCE, protects the cells from diverse apoptosis-inducing pathways, such as those induced by thapsigargin (Tg), tumor necrosis factor α, and cisplatin/oxaliplatin. The transfection of functional Orai1 mutants, such as R91W, a selectivity mutant, and L273S, a coiled-coil mutant, into the cells significantly decreased both SOCE and the rate of Tg-induced apoptosis. This suggests that the functional coupling of STIM1 to Orai1, as well as Orai1 Ca2+-selectivity as a channel, is required for its pro-apoptotic effects. We have also shown that the apoptosis resistance of androgen-independent PCa cells is associated with the downregulation of Orai1 expression as well as SOCE. Orai1 rescue, following Orai1 transfection of steroid-deprived cells, re-established the store-operated channel current and restored the normal rate of apoptosis. Thus, Orai1 has a pivotal role in the triggering of apoptosis, irrespective of apoptosis-inducing stimuli, and in the establishment of an apoptosis-resistant phenotype in PCa cells.


Cell Death & Differentiation | 2004

Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells.

K Vanoverberghe; F Vanden Abeele; Pascal Mariot; Gilbert Lepage; Morad Roudbaraki; Jean-Louis Bonnal; Brigitte Mauroy; Yaroslav Shuba; Roman Skryma; Natalia Prevarskaya

AbstractNeuroendocrine (NE) differentiation is a hallmark of advanced, androgen-independent prostate cancer, for which there is no successful therapy. NE tumor cells are nonproliferating and escape apoptotic cell death; therefore, an understanding of the apoptotic status of the NE phenotype is imperative for the development of new therapies for prostate cancer. Here, we report for the first time on alterations in intracellular Ca2+ homeostasis, which is a key factor in apoptosis, caused by NE differentiation of androgen-dependent prostate cancer epithelial cells. NE-differentiating regimens, either cAMP elevation or androgen deprivation, resulted in a reduced endoplasmic reticulum Ca2+-store content due to both SERCA 2b Ca2+ ATPase and luminal Ca2+ binding/storage chaperone calreticulin underexpression, and to a downregulated store-operated Ca2+ current. NE-differentiated cells showed enhanced resistance to thapsigargin- and TNF-α-induced apoptosis, unrelated to antiapoptotic Bcl-2 protein overexpression. Our results suggest that targeting the key players determining Ca2+ homeostasis in an attempt to enhance the proapoptotic potential of malignant cells may prove to be a useful strategy in the treatment of advanced prostate cancer.


Journal of Biological Chemistry | 2006

Ca2+-independent Phospholipase A2-dependent Gating of TRPM8 by Lysophospholipids

Fabien Vanden Abeele; Alexander Zholos; Gabriel Bidaux; Yaroslav Shuba; Stéphanie Thebault; Benjamin Beck; Matthieu Flourakis; Yuri Panchin; Roman Skryma; Natalia Prevarskaya

TRPM8 represents an ion channel activated by cold temperatures and cooling agents, such as menthol, that underlies the cold-induced excitation of sensory neurons. Interestingly, the only human tissue outside the peripheral nervous system, in which the expression of TRPM8 transcripts has been detected at high levels, is the prostate, a tissue not exposed to any essential temperature variations. Here we show that the TRPM8 cloned from human prostate and heterologously expressed in HEK-293 cells is regulated by the Ca2+-independent phospholipase A2 (iPLA2) signaling pathway with its end products, lysophospholipids (LPLs), acting as its endogenous ligands. LPLs induce prominent prolongation of TRPM8 channel openings that are hardly detectable with other stimuli (e.g. cold, menthol, and depolarization) and that account for more than 90% of the total channel open time. Down-regulation of iPLA2 resulted in a strong inhibition of TRPM8-mediated functional responses and abolished channel activation. The action of LPLs on TRPM8 channels involved either changes in the local lipid bilayer tension or interaction with the critical determinant(s) in the transmembrane channel core. Based on this, we propose a novel concept of TRPM8 regulation with the involvement of iPLA2 stimulation. This mechanism employs chemical rather than physical (temperature change) signaling and thus may be the main regulator of TRPM8 activation in organs not exposed to any essential temperature variations, as in the prostate gland.


Philosophical Transactions of the Royal Society B | 2014

Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks?

Natalia Prevarskaya; Halima Ouadid-Ahidouch; Roman Skryma; Yaroslav Shuba

Cancer involves defects in the mechanisms underlying cell proliferation, death and migration. Calcium ions are central to these phenomena, serving as major signalling agents with spatial localization, magnitude and temporal characteristics of calcium signals ultimately determining cells fate. Cellular Ca2+ signalling is determined by the concerted action of a molecular Ca2+-handling toolkit which includes: active energy-dependent Ca2+ transporters, Ca2+-permeable ion channels, Ca2+-binding and storage proteins, Ca2+-dependent effectors. In cancer, because of mutations, aberrant expression, regulation and/or subcellular targeting of Ca2+-handling/transport protein(s) normal relationships among extracellular, cytosolic, endoplasmic reticulum and mitochondrial Ca2+ concentrations or spatio-temporal patterns of Ca2+ signalling become distorted. This causes deregulation of Ca2+-dependent effectors that control signalling pathways determining cells behaviour in a way to promote pathophysiological cancer hallmarks such as enhanced proliferation, survival and invasion. Despite the progress in our understanding of Ca2+ homeostasis remodelling in cancer cells as well as in identification of the key Ca2+-transport molecules promoting certain malignant phenotypes, there is still a lot of work to be done to transform fundamental findings and concepts into new Ca2+ transport-targeting tools for cancer diagnosis and treatment.

Collaboration


Dive into the Yaroslav Shuba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murat Oz

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Thebault

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Oleg I. Voitychuk

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

P. G. Kostyuk

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lina T. Al Kury

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sehamuddin Galadari

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge