Yaseelan Palarasah
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaseelan Palarasah.
Journal of Biological Chemistry | 2010
Mikkel-Ole Skjoedt; Tina Hummelshøj; Yaseelan Palarasah; Christian Honoré; Claus Koch; Karsten Skjødt; Peter Garred
The human lectin complement pathway involves circulating complexes consisting of mannose-binding lectin (MBL) or three ficolins (ficolin-1, -2, and -3) in association with three MBL/ficolin-associated serine proteases (MASP) (MASP-1, -2, and -3) and a nonenzymatic sMAP. MASP-1 and MASP-3 (MASP1 isoforms 1 and 2, respectively) are splice variants of the MASP1 gene, whereas MASP-2 and sMAP are splice variants of the MASP2 gene. We have identified a novel serum protein of 45 kDa that is associated with MBL and the ficolins. This protein is named MBL/ficolin-associated protein 1 (MAP-1 corresponding to MASP1 isoform 3). The transcript generating MAP-1 (MASP1_v3) contains exons 1–8 and a novel exon encoding an in-frame stop codon. The corresponding protein lacks the serine protease domains but contains most of the common heavy chain of MASP-1 and MASP-3. Additionally MAP-1 contains 17 unique C-terminal amino acids. By use of quantitative PCR and MAP-1-specific immunohistochemistry, we found that MAP-1 is highly expressed in myocardial and skeletal muscle tissues as well as in liver hepatocytes with a different expression profile than that observed for MASP-1 and MASP-3. MAP-1 co-precipitated from human serum with MBL, ficolin-2, and ficolin-3, and recombinant MAP-1 was able to inhibit complement C4 deposition via both the ficolin-3 and MBL pathway. In conclusion we have identified a novel 45-kDa serum protein derived from the MASP1 gene, which is highly expressed in striated muscle tissues. It is found in complex with MBL and ficolins and may function as a potent inhibitor of the complement system in vivo.
Journal of Immunology | 2013
Maiken Lumby Henriksen; Jette Brandt; Jean-Piere Andrieu; Christian Nielsen; Pia Hønnerup Jensen; Uffe Holmskov; Thomas J. D. Jørgensen; Yaseelan Palarasah; Nicole M. Thielens; Søren Hansen
The complement system is an important part of the innate immune system. The complement cascade may be initiated downstream of the lectin activation pathway upon binding of mannan-binding lectin, ficolins, or collectin kidney 1 (CL-K1, alias CL-11) to suitable microbial patterns consisting of carbohydrates or acetylated molecules. During purification and characterization of native CL-K1 from plasma, we observed that collectin liver 1 (CL-L1) was copurified. Based on deglycosylation and nonreduced/reduced two-dimensional SDS-PAGE, we detected CL-K1 and CL-L1 in disulfide bridge-stabilized complexes. Heteromeric complex formation in plasma was further shown by ELISA and transient coexpression. Judging from the migration pattern on two-dimensional SDS-PAGE, the majority of plasma CL-K1 was found in complex with CL-L1. The ratio of this complex was in favor of CL-K1, suggesting that a heteromeric subunit is composed of one CL-L1 and two CL-K1 polypeptide chains. We found that the complex bound to mannan-binding lectin–associated serine proteases (MASPs) with affinities in the nM range in vitro and was associated with both MASP-1/-3 and MASP-2 in plasma. Upon binding to mannan or DNA in the presence of MASP-2, the CL-L1–CL-K1 complex mediated deposition of C4b. In favor of large oligomers, the activity of the complex was partly determined by the oligomeric size, which may be influenced by an alternatively spliced variant of CL-K1. The activity of the native heteromeric complexes was superior to that of recombinant CL-K1. We conclude that CL-K1 exists in circulation in the form of heteromeric complexes with CL-L1 that interact with MASPs and can mediate complement activation.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009
Per Svenningsen; Torben Rene Uhrenholt; Yaseelan Palarasah; Karsten Skjødt; Boye L. Jensen; Ole Skøtt
Several pathophysiological conditions, including nephrotic syndrome, are characterized by increased renal activity of the epithelial Na(+) channel (ENaC). We recently identified plasmin in nephrotic urine as a stimulator of ENaC activity and undertook this study to investigate the mechanism by which plasmin stimulates ENaC activity. Cy3-labeled plasmin was found to bind to the surface of the mouse cortical collecting duct cell line, M-1. Binding depended on a glycosylphosphatidylinositol (GPI)-anchored protein. Biotin-label transfer showed that plasmin interacted with the GPI-anchored protein prostasin on M-1 cells and that plasmin cleaved prostasin. Prostasin activates ENaC by cleavage of the gamma-subunit, which releases an inhibitory peptide from the extracellular domain. Removal of GPI-anchored proteins from the M-1 cells with phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited plasmin-stimulated ENaC current in monolayers of M-1 cells at low plasmin concentration (1-4 microg/ml). At a high plasmin concentration of 30 microg/ml, there was no difference between cell layers treated with or without PI-PLC. Knockdown of prostasin attenuated binding of plasmin to M1 cells and blocked plasmin-stimulated ENaC current in single M-1 cells, as measured by whole-cell patch clamp. In M-1 cells expressing heterologous FLAG-tagged prostasin, gammaENaC and prostasin were colocalized. A monoclonal antibody directed against the inhibitory peptide of gammaENaC produced specific immunofluorescence labeling of M-1 cells. Pretreatment with plasmin abolished labeling of M-1 cells in a prostasin-dependent way. We conclude that, at low concentrations, plasmin interacts with GPI-anchored prostasin, which leads to cleavage of the gamma-subunit and activation of ENaC, while at higher concentrations, plasmin directly activates ENaC.
Immunobiology | 2010
Mikkel-Ole Skjoedt; Yaseelan Palarasah; Lea Munthe-Fog; Ying Jie Ma; Gudrun Weiss; Karsten Skjødt; Claus Koch; Peter Garred
BACKGROUND The human lectin complement pathway (LCP) involves circulating complexes consisting of mannose-binding lectin (MBL) or ficolins in association with serine proteases named MASP-1, -2 and -3 and a non-enzymatic protein, sMAP. MASP-3 originates from the MASP1 gene through differential splicing and little is known about its biological characteristics. For this reason we expressed recombinant MASP-3 and generated specific monoclonal antibodies to establish biochemical characteristics and to determine the serum levels, the interactions with the LCP recognition molecules and the influence on complement activation of MASP-3. METHODS We expressed rMASP-3 in CHO-DG44 cells and used SDS-PAGE and Western blotting for biochemical characterization. We generated monoclonal antibodies against MASP-3 and developed a quantitative MASP-3 assay to establish the serum levels in 100 Danish blood donors. In addition we assessed the association levels between MASP-3 and Ficolin-2, -3 and MBL using both ELISA and immunoprecipitation techniques. Moreover, we assessed the influence on complement factor C4 deposition. RESULTS We found the mean serum MASP-3 concentration to be 6.4mg/l (range: 2-12.9mg/l) and that MASP-3 in serum is primarily found in complex with Ficolin-3. In contrast to this the MASP-3 association with Ficolin-2 and especially with MBL seems to be less evident. rMASP-3 significantly inhibited Ficolin-3 mediated C4 deposition, while the opposite was the case for rMASP-1. CONCLUSION Our results show that MASP-3 is present in relatively high serum concentrations. Moreover, Ficolin-3 is the primary acceptor molecule of MASP-3 among the LCP activator molecules, but MASP-3 appears to down-regulate Ficolin-3 mediated complement activation through the lectin pathway.
Alimentary Pharmacology & Therapeutics | 2013
Casper Steenholdt; Yaseelan Palarasah; Klaus Bendtzen; Ane S. Teisner; Jørn Brynskov; Børge Teisner; Claus Henrik Nielsen
Infliximab (IFX) is a chimeric murine/human anti‐TNF antibody (Ab) used for the treatment of Crohns disease (CD) and ulcerative colitis (UC). Loss of response is common and associated with development of anti‐IFX Abs during ongoing therapy. However, human anti‐murine immunoglobulin Abs are common and may cross‐react with the murine part of IFX.
Journal of Immunological Methods | 2012
Lana Selman; Maiken Lumby Henriksen; Jette Brandt; Yaseelan Palarasah; A Waters; Philip L. Beales; Uffe Holmskov; Thomas J. D. Jørgensen; Christian Nielsen; Karsten Skjødt; Søren Hansen
Collectin 11 (CL-11), also referred to as collectin kidney 1 (CL-K1), is a pattern recognition molecule that belongs to the collectin group of proteins involved in innate immunity. It interacts with glycoconjugates on pathogen surfaces and has been found in complex with mannose-binding lectin-associated serine protease 1 (MASP-1) and/or MASP-3 in circulation. Mutation in the CL-11 gene was recently associated with the developmental syndrome 3MC. In the present study, we established and thoroughly validated a sandwich enzyme-linked immunosorbent assay (ELISA) based on two different monoclonal antibodies. The assay is highly sensitive, specific and shows excellent quantitative characteristics such as reproducibility, dilution linearity and recovery (97.7–104%). The working range is 0.15–34 ng/ml. The CL-11 concentration in two CL-11-deficient individuals affected by the 3MC syndrome was determined to be below 2.1 ng/ml. We measured the mean serum CL-11 concentration to 284 ng/ml in 100 Danish blood donors, with a 95% confidence interval of 269–299 ng/ml. There was no significant difference in the CL-11 concentration measured in matched serum and plasma samples. Storage of samples and repeated freezing and thawing to a certain extent did not influence the ELISA. This ELISA offers a convenient and reliable method for studying CL-11 levels in relation to a variety of human diseases and syndromes.
Journal of Clinical Microbiology | 2010
Yaseelan Palarasah; Mikkel-Ole Skjoedt; Lars Vitved; Thomas Emil Andersen; Karsten Skjoedt; Claus Koch
ABSTRACT Sodium polyanethole sulfonate (SPS; trade name, Liquoid) is a constituent in culture media used to grow bacteria from blood samples from patients suspected of bacteremia. SPS prevents the killing of bacteria by innate cellular and humoral factors. We analyzed the effect of SPS on the three complement activation pathways: the classical, alternative, and lectin pathways, respectively. Inhibition of complement activity by SPS is caused by a blocking of complement activation and is not a result of complement consumption. The classical pathway is inhibited at SPS concentrations greater than 0.1 mg/ml, and complete inhibition is seen at 0.4 mg/ml. An SPS concentration of 0.5 mg/ml completely inhibits the binding of C1q and subsequent incorporation of C3, C4, and C9. The same was observed for the alternative pathway with an inhibition at SPS concentrations from 0.1 mg/ml and a complete inhibition from 0.4 mg/ml. Here, properdin binding was completely absent, and no incorporation of C3 and C9 was observed. In contrast, the lectin complement pathway remains unaffected at these SPS concentrations, and inhibition is first observed from 0.7 mg/ml. A complete inhibition required concentrations greater than 1 mg/ml. SPS is used in growth media (e.g., BACTEC and BacT/Alert) at concentrations from 0.3 to 0.5 mg/ml. The well-known finding that certain bacteria are growth inhibited by blood factors could therefore be a consequence of the lectin pathway, which is not inhibited at these concentrations. In addition, our findings also open up the possibility of a new assay for the assessment of the functional capacity of the lectin complement pathway.
Clinical Journal of The American Society of Nephrology | 2014
Yuzhou Zhang; Carla M. Nester; Bertha Martin; Mikkel-Ole Skjoedt; Nicole C. Meyer; Dingwu Shao; Nicolò Borsa; Yaseelan Palarasah; Richard J.H. Smith
BACKGROUND AND OBJECTIVES C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. RESULTS Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6-C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared with patients with C3GN. CONCLUSIONS Complement biomarkers are significantly abnormal in patients with C3G compared with controls. These data substantiate the link between complement dysregulation and C3G and identify C3G interdisease differences.
Biomaterials | 2011
Thomas Emil Andersen; Yaseelan Palarasah; Mikkel-Ole Skjødt; Ryosuke Ogaki; Maike Benter; Mojagan Alei; Hans Jørn Kolmos; Claus Koch; Peter Kingshott
In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are both potent activators of the complement system, measured both as activated, deposited C3b and quantifying fluid-phase release of the cleavage fragment C3c. The ppVP coated silicone exhibits approximately 90% reduced complement activation compared to untreated silicone. Quartz crystal microbalance with dissipation (QCM-D) measurements show relatively strong adsorption of blood proteins including native C3 to the ppVP surface, indicating that reduction of complement activation on ppVP is neither a result of low protein adsorption nor lower direct C3-binding, and is therefore possibly a consequence of differences in the adsorbed protein layer composition. The alternative and classical complement pathways are barely detectable on ppVP while the lectin pathway through MBL/ficolin-2 deposition remains active on ppVP suggesting this pathway is responsible for the remaining subtle activation on the ppVP coated surface. The ppVP surface is furthermore characterized physically and chemically using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR), which indicates preservation of chemical functionality by the applied plasma process. Overall, the ppVP coating shows a potential for increasing complement-compatibility of blood-contacting devices.
Journal of Immunology | 2015
Alexander D. Barrow; Yaseelan Palarasah; Mattia Bugatti; Alex S. Holehouse; Derek E. Byers; Michael J. Holtzman; William Vermi; Karsten Skjødt; Erika C. Crouch; Marco Colonna
Surfactant protein D (SP-D) is critical for maintenance of lung homeostasis and provides a first line of defense to pathogens at mucosal surfaces. Polymorphisms in the SP-D–encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. Identification of the immunoreceptors that bind SP-D is essential for understanding its contribution to lung homeostasis and mucosal defense. We located a putative binding motif for the osteoclast-associated receptor (OSCAR) within the SP-D collagenous domain. An OSCAR-Fc fusion protein specifically bound to the collagenous region of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2+ inflammatory monocytes, which secreted TNF-α when exposed to SP-D in an OSCAR-dependent fashion. OSCAR and SP-D did not exclusively colocalize in lung, as they were also highly expressed in atherosclerotic plaques of human aorta, supporting a role for this interaction in atherosclerosis. Our results identify the OSCAR:SP-D interaction as a potential therapeutic target in chronic inflammatory diseases of the lung as well as other diseases involving tissue accumulation of SP-D, infiltration of inflammatory monocytes, and release of TNF-α.