Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yashveer Singh is active.

Publication


Featured researches published by Yashveer Singh.


Current Medicinal Chemistry | 2008

Recent Trends in Targeted Anticancer Prodrug and Conjugate Design

Yashveer Singh; Matthew S. Palombo; Patrick J. Sinko

Anticancer drugs are often nonselective antiproliferative agents (cytotoxins) that preferentially kill dividing cells by attacking their DNA at some level. The lack of selectivity results in significant toxicity to noncancerous proliferating cells. These toxicities along with drug resistance exhibited by the solid tumors are major therapy limiting factors that result into poor prognosis for patients. Prodrug and conjugate design involves the synthesis of inactive drug derivatives that are converted to an active form inside the body and preferably at the site of action. Classical prodrug and conjugate design have focused on the development of prodrugs that can overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs. The recent targeted prodrug and conjugate design, on the other hand, hinge on the selective delivery of anticancer agents to tumor tissues thereby avoiding their cytotoxic effects on noncancerous cells. Targeting strategies have attempted to take advantage of low extracellular pH, elevated enzymes in tumor tissues, the hypoxic environment inside the tumor core, and tumor-specific antigens expressed on tumor cell surfaces. The present review highlights recent trends in prodrug and conjugate rationale and design for cancer treatment. The various approaches that are currently being explored are critically analyzed and a comparative account of the advantages and disadvantages associated with each approach is presented.


Journal of Controlled Release | 2009

Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response

SivaNaga S. Anumolu; Yashveer Singh; Dayuan Gao; Stanley Stein; Patrick J. Sinko

Fast forming hydrogels prepared by crosslinking a poly(ethylene glycol) (PEG)-based copolymer containing multiple thiol (SH) groups were evaluated for the controlled ocular delivery of pilocarpine and subsequent pupillary constriction. Physical properties of the hydrogels were characterized using UV-Vis spectrophotometry, transmission electron microscopy (TEM), rheometry, and swelling kinetics. Pilocarpine loading efficiency and release properties were measured in simulated tear fluid. The hydrogel formulations exhibited high drug loading efficiency (approximately 74%). Pilocarpine release was found to be biphasic with release half times of approximately 2 and 94 h, respectively, and 85-100% of the drug was released over 8-days. Pilocarpine-loaded (2% w/v) hydrogels were evaluated in a rabbit model and compared to a similar dose of drug in aqueous solution. The hydrogels were retained in the eye for the entire period of the study with no observed irritation. Pilocarpine-loaded hydrogels sustained pupillary constriction for 24 h after administration as compared to 3 h for the solution, an 8-fold increase in the duration of action. A strong correlation between pilocarpine release and pupillary response was observed. In conclusion, the current studies demonstrate that in situ forming PEG hydrogels possess the viscoelastic, retention, and sustained delivery properties required for an efficient ocular drug delivery system.


Journal of Controlled Release | 2010

Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats

Hilliard L. Kutscher; Piyun Chao; Manjeet Deshmukh; Yashveer Singh; Peidi Hu; Laurie B. Joseph; David Reimer; Stanley Stein; Debra L. Laskin; Patrick J. Sinko

The relationship between microparticle (MP) size and lung targeting efficiency, intra-lung distribution and retention time was systematically studied after intravenous administration of rigid fluorescent polystyrene MPs of various sizes (2, 3, 6 and 10 microm) to Sprague Dawley rats. Total fluorescence was assessed and it was found that 2 microm and 3 microm MPs readily passed through the lung to the liver and spleen while 10 microm MPs were completely entrapped in the lung for the one-week duration of the study. Approximately 84% of 6 microm MPs that were initially entrapped in the lung were cleared over the next 2 days and 15% were cleared over the remaining 5 days. A Caliper IVIS 100 small animal imaging system confirmed that 3 microm MPs were not retained in the lung but that 6 microm and 10 microm MPs were widely distributed throughout the lung. Moreover, histologic examination showed MP entrapment in capillaries but not arterioles. These studies suggest that for rigid MPs the optimal size range required to achieve transient but highly efficiently targeting to pulmonary capillaries after IV injection is >6 microm but <10 microm in rats and that systemic administration of optimally sized MPs may be an efficient alternative to currently used inhalation-based delivery to the lung.


ChemBioChem | 2006

Synthetic Peptide Templates for Molecular Recognition: Recent Advances and Applications

Yashveer Singh; Gunnar T. Dolphin; Jesus Razkin; Pascal Dumy

The creation of molecular systems that can mimic some of the properties of natural macromolecules is one of the major endeavors in contemporary protein chemistry. However, the construction of artificial proteins with predetermined structure and function is difficult on account of complex folding pathways. The use of topological peptide templates has been suggested to induce and stabilize defined secondary and tertiary structures. This is because the recent advances in the chemistry of coupling reagents, protecting groups, and solid‐phase synthesis have made the chemical synthesis of peptides with conformationally controlled and complex structures feasible. Besides their use as structure‐inducing devices, these peptide templates can also be utilized to construct novel structures with tailor‐made functions. Herein, we present recent advances in the field of peptide‐template‐based approaches with particular emphasis on the demonstrated utility of this approach in molecular recognition, along with related applications.


Biomaterials | 2010

Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism.

Manjeet Deshmukh; Yashveer Singh; Simi Gunaseelan; Dayuan Gao; Stanley Stein; Patrick J. Sinko

Two vinyl sulfone functionalized crosslinkers were developed for the purpose of preparing degradable poly(ethylene glycol) (PEG) hydrogels (EMXL and GABA-EMXL hydrogels). A self-elimination degradation mechanism in which an N-terminal residue of a glutamine is converted to pyroglutamic acid with subsequent release of diamino PEG (DAP) is proposed. The hydrogels were formed via Michael addition by mixing degradable or nondegradable crosslinkers and copolymer {4% w/v; poly[PEG-alt-poly(mercapto-succinic acid)]} at room temperature in phosphate buffer (PB, pH = 7.4). Hydrogel degradation was characterized by assessing diamino PEG release and examining morphological changes as well as the swelling and weight loss ratio under physiological conditions (37 degrees C). Degradation of EMXL and GABA-EMXL hydrogels occurred by surface erosion (confirmed by SEM). GABA-EMXL degradation was significantly faster (approximately 3-fold) than EMXL; however, the degradation of both hydrogels in mouse plasma was 12-times slower than in PBS. The slower degradation rate in plasma as compared to buffer is consistent with the presence of gamma-glutamyltransferase, gamma-glutamylcyclotransferase and/or glutaminyl cyclase (QC), which have been shown to suppress pyroglutamic acid formation. The current studies suggest that EMXL and GABA-EMXL hydrogels may have biomedical applications where 1-2 week degradation timeframes are optimal.


International Journal of Pharmaceutics | 2010

Enhanced passive pulmonary targeting and retention of PEGylated rigid microparticles in rats

Hilliard L. Kutscher; Piyun Chao; Manjeet Deshmukh; Sujata Sundara Rajan; Yashveer Singh; Peidi Hu; Laurie B. Joseph; Stanley Stein; Debra L. Laskin; Patrick J. Sinko

The current study examines the passive pulmonary targeting efficacy and retention of 6μm polystyrene (PS) microparticles (MPs) covalently modified with different surface groups [amine (A-), carboxyl (C-) and sulfate (S-)] or single (PEG(1)-) and double (PEG(2)-) layers of α,ω-diamino poly(ethylene glycol) attached to C-MPs. The ζ-potential of A-MPs (-44.0mV), C-MPs (-54.3mV) and S-MPs (-49.6mV) in deionized water were similar; however PEGylation increased the ζ-potential for both PEG(1)-MPs (-18.3mV) and PEG(2)-MPs (11.5mV). The biodistribution and retention of intravenously administered MPs to male Sprague-Dawley rats was determined in homogenized tissue by fluorescence spectrophotometry. PEG(1)-MPs and PEG(2)-MPs demonstrated enhanced pulmonary retention in rats at 48h after injection when compared to unmodified A-MPs (59.6%, 35.9% and 17.0% of the administered dose, respectively). While unmodified MPs did not significantly differ in lung retention, PEGylation of MPs unexpectedly improved passive lung targeting and retention by modifying surface properties including charge and hydrophobicity but not size.


Journal of Drug Delivery Science and Technology | 2009

Prodrug and conjugate drug delivery strategies for improving HIV/AIDS therapy.

Matthew S. Palombo; Yashveer Singh; Patrick J. Sinko

Despite the wide variety of highly potent anti-HIV drugs that have been developed and made available in clinical practice over the years, eradication of HIV infection has not been achieved. Currently, HIV infection and AIDS are thought to be chronically treatable. HIV attacks host immune cells namely macrophages and CD4(+)T-cells and sequesters itself into sanctuary and reservoir sites such as the lymphoid tissues, testes, and brain. Initial drug delivery efforts with prodrugs and drug conjugates focused on improving the physicochemical (i.e. solubility), biopharmaceutic (i.e. absorption, metabolism), and pharmacokinetic (i.e. blood concentrations) properties of the parent drugs. Eradicating HIV, however, will require advanced drug delivery approaches in order to access and maintain effective drug concentrations for prolonged periods of time in sanctuary sites. The current review discusses prodrug/conjugate efforts, clinical successes and describes drug delivery challenges and approaches for eradicating HIV infection.


Organic and Biomolecular Chemistry | 2006

A novel heterobifunctional linker for facile access to bioconjugates

Yashveer Singh; Nicolas Spinelli; Eric Defrancq; Pascal Dumy

A convenient synthesis of a novel heterobifunctional linker molecule is described. The linker contains a thiol-reactive nitropyridyl disulfide group (Npys) and an aldehyde-reactive aminooxy group with a propensity to form disulfide and oxime linkages. The utility of the linker molecule to cross-link different biomolecules has been demonstrated by employing it in the efficient preparation of a peptide-oligonucleotide conjugate. The linker reported herein could be a useful tool for cross-coupling of different but appropriately functionalised biomolecules.


Molecular Pharmaceutics | 2012

Noninvasive detection of passively targeted poly(ethylene glycol) nanocarriers in tumors.

Yashveer Singh; Dayuan Gao; Zichao Gu; Shike Li; Stanley Stein; Patrick J. Sinko

The present studies noninvasively investigate the passive tumor distribution potential of a series of poly(ethylene glycol) (PEG) nanocarriers using a SkinSkan spectrofluorometer and an In Vivo Imaging System (IVIS) 100. Fluorescein conjugated PEG nanocarriers of varying molecular weights (10, 20, 30, 40, and 60 kDa) were prepared and characterized. The nanocarriers were administered intravenously to female balb/c mice bearing subcutaneous 4T1 tumors. Passive distribution was measured in vivo (λ(exc), 480 nm; λ(em), 515-520 nm) from the tumor and a contralateral skin site (i.e., control site). The signal intensity from the tumor was always significantly higher than that from the contralateral site. Trends in results between the two methods were consistent with tumor distribution increasing in a molecular weight-dependent manner (10 < 20 < 30 ≪ 40 ≪ 60 kDa). The 10 kDa nanocarrier was not detected in tumors at 24 h, whereas 40-60 kDa nanocarriers were detected in tumors for up to 96 h. The 30, 40, and 60 kDa nanocarriers showed 2.1, 5.3, and 4.1 times higher passive distribution in tumors at 24 h, respectively, as compared to the 20 kDa nanocarrier. The 60 kDa nanocarrier exhibited 1.5 times higher tumor distribution than 40 kDa nanocarrier at 96 h. Thus, PEG nanocarriers (40 and 60 kDa) with molecular weights close to or above the renal exclusion limit, which for globular proteins is ≥45 kDa, showed significantly higher tumor distribution than those below it. The hydrodynamic radii of PEG polymers, measured using dynamic light scattering (DLS), showed that nanocarriers obtained from polymers with hydrodynamic radii ≥8 nm exhibited higher tumor distribution. Ex vivo mass balance studies revealed that nanocarrier tissue distribution followed the rank order tumor > lung > spleen > liver > kidney > muscle > heart, thus validating the in vivo studies. The results of the current studies suggest that noninvasive dermal imaging of tumors provides a reliable and rapid method for the initial screening of nanocarrier tumor distribution pharmacokinetics.


Antimicrobial Agents and Chemotherapy | 2014

Polyethylene Glycol-Based Hydrogels for Controlled Release of the Antimicrobial Subtilosin for Prophylaxis of Bacterial Vaginosis

Sujata Sundara Rajan; Veronica L. Cavera; Xiaoping Zhang; Yashveer Singh; Michael L. Chikindas; Patrick J. Sinko

ABSTRACT Current treatment options for bacterial vaginosis (BV) have been shown to be inadequate at preventing recurrence and do not provide protection against associated infections, such as that with HIV. This study examines the feasibility of incorporating the antimicrobial peptide subtilosin within covalently cross-linked polyethylene glycol (PEG)-based hydrogels for vaginal administration. The PEG-based hydrogels (4% and 6% [wt/vol]) provided a two-phase release of subtilosin, with an initial rapid release rate of 4.0 μg/h (0 to 12 h) followed by a slow, sustained release rate of 0.26 μg/h (12 to 120 h). The subtilosin-containing hydrogels inhibited the growth of the major BV-associated pathogen Gardnerella vaginalis with a reduction of 8 log10 CFU/ml with hydrogels containing ≥15 μg entrapped subtilosin. In addition, the growth of four common species of vaginal lactobacilli was not significantly inhibited in the presence of the subtilosin-containing hydrogels. The above findings demonstrate the potential application of vaginal subtilosin-containing hydrogels for prophylaxis of BV.

Collaboration


Dive into the Yashveer Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley Stein

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Eric Defrancq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascal Dumy

École nationale supérieure de chimie de Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishna Misra

Indian Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge