Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasir Iqbal is active.

Publication


Featured researches published by Yasir Iqbal.


Frontiers in Plant Science | 2016

Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC

Iris Lewandowski; John Clifton-Brown; Luisa M. Trindade; Gerard van der Linden; Kai Uwe Schwarz; Karl Müller-Sämann; Alexander Anisimov; C.L. Chen; Oene Dolstra; Iain S. Donnison; Kerrie Farrar; Simon Fonteyne; Graham Harding; Astley Hastings; Laurie M. Huxley; Yasir Iqbal; Nikolay Khokhlov; Andreas Kiesel; P. Lootens; Heike Meyer; Michal Mos; Hilde Muylle; Chris Nunn; Mensure Özgüven; Isabel Roldán-Ruiz; Heinrich Schüle; Ivan Tarakanov; Tim van der Weijde; Moritz Wagner; Qingguo Xi

This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha−1y−1 and 429 GJ ha−1y−1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of –78€ t−1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.


Gcb Bioenergy | 2017

Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products

Tim van der Weijde; Andreas Kiesel; Yasir Iqbal; Hilde Muylle; Oene Dolstra; Richard G. F. Visser; Iris Lewandowski; Luisa M. Trindade

Miscanthus is a promising fiber crop with high potential for sustainable biomass production for a biobased economy. The effect of biomass composition on the processing efficiency of miscanthus biomass for different biorefinery value chains was evaluated, including combustion, anaerobic digestion and enzymatic saccharification for the production of bioethanol. Biomass quality and composition was analyzed in detail using stem and leaf fractions of summer (July) and winter (March) harvested biomass of eight compositionally diverse Miscanthus sinensis genotypes. Genotype performance in tests for enzymatic saccharification, anaerobic digestion and combustion differed extensively. The variation between the best and the worst performing genotype was 18% for biogas yield (ml g−1 dm) and 42% for saccharification efficiency (glucose release as %dm). The ash content of the best performing genotype was 62% lower than that of the genotype with the highest ash content and showed a considerably high ash melting temperature during combustion. Variation between genotypes in biomass quality for the different thermochemical bioconversion processes was shown to be strongly correlated to differences in biomass composition. The most important traits that contributed favorably to biogas yields and saccharification efficiency were a high content of trans‐ferulic acid, a high ratio of para‐coumaric acid to lignin and a low lignin content. Additionally, a high content of hemicellulosic polysaccharides positively affected saccharification efficiency. Low contents of ash and inorganic elements positively affect biomass quality for combustion and low potassium and chloride contents contributed to a higher ash melting temperature. These results demonstrate the potential for optimizing and exploiting M. sinensis as a multipurpose lignocellulosic feedstock, particularly for bioenergy applications.


Bioresource Technology | 2015

Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

M.A. Kärcher; Yasir Iqbal; Iris Lewandowski; Thomas Senn

The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment.


Frontiers in Plant Science | 2017

Novel miscanthus germplasm-based value chains: A Life Cycle Assessment

Moritz Wagner; Andreas Kiesel; Astley Hastings; Yasir Iqbal; Iris Lewandowski

In recent years, considerable progress has been made in miscanthus research: improvement of management practices, breeding of new genotypes, especially for marginal conditions, and development of novel utilization options. The purpose of the current study was a holistic analysis of the environmental performance of such novel miscanthus-based value chains. In addition, the relevance of the analyzed environmental impact categories was assessed. A Life Cycle Assessment was conducted to analyse the environmental performance of the miscanthus-based value chains in 18 impact categories. In order to include the substitution of a reference product, a system expansion approach was used. In addition, a normalization step was applied. This allowed the relevance of these impact categories to be evaluated for each utilization pathway. The miscanthus was cultivated on six sites in Europe (Aberystwyth, Adana, Moscow, Potash, Stuttgart and Wageningen) and the biomass was utilized in the following six pathways: (1) small-scale combustion (heat)—chips; (2) small-scale combustion (heat)—pellets; (3) large-scale combustion (CHP)—biomass baled for transport and storage; (4) large-scale combustion (CHP)—pellets; (5) medium-scale biogas plant—ensiled miscanthus biomass; and (6) large-scale production of insulation material. Thus, in total, the environmental performance of 36 site × pathway combinations was assessed. The comparatively high normalized results of human toxicity, marine, and freshwater ecotoxicity, and freshwater eutrophication indicate the relevance of these impact categories in the assessment of miscanthus-based value chains. Differences between the six sites can almost entirely be attributed to variations in biomass yield. However, the environmental performance of the utilization pathways analyzed varied widely. The largest differences were shown for freshwater and marine ecotoxicity, and freshwater eutrophication. The production of insulation material had the lowest impact on the environment, with net benefits in all impact categories expect three (marine eutrophication, human toxicity, agricultural land occupation). This performance can be explained by the multiple use of the biomass, first as material and subsequently as an energy carrier, and by the substitution of an emission-intensive reference product. The results of this study emphasize the importance of assessing all environmental impacts when selecting appropriate utilization pathways.


Frontiers in Plant Science | 2017

Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields

Andreas Kiesel; Christopher Nunn; Yasir Iqbal; Tim van der Weijde; Moritz Wagner; Mensure Özgüven; Ivan Tarakanov; Olena Kalinina; Luisa M. Trindade; John Clifton-Brown; Iris Lewandowski

In Europe, the perennial C4 grass miscanthus is currently mainly cultivated for energy generation via combustion. In recent years, anaerobic digestion has been identified as a promising alternative utilization pathway. Anaerobic digestion produces a higher-value intermediate (biogas), which can be upgraded to biomethane, stored in the existing natural gas infrastructure and further utilized as a transport fuel or in combined heat and power plants. However, the upgrading of the solid biomass into gaseous fuel leads to conversion-related energy losses, the level of which depends on the cultivation parameters genotype, location, and harvest date. Thus, site-specific crop management needs to be adapted to the intended utilization pathway. The objectives of this paper are to quantify (i) the impact of genotype, location and harvest date on energy yields of anaerobic digestion and combustion and (ii) the conversion losses of upgrading solid biomass into biogas. For this purpose, five miscanthus genotypes (OPM 3, 6, 9, 11, 14), three cultivation locations (Adana, Moscow, Stuttgart), and up to six harvest dates (August–March) were assessed. Anaerobic digestion yielded, on average, 35% less energy than combustion. Genotype, location, and harvest date all had significant impacts on the energy yield. For both, this is determined by dry matter yield and ash content and additionally by substrate-specific methane yield for anaerobic digestion and moisture content for combustion. Averaged over all locations and genotypes, an early harvest in August led to 25% and a late harvest to 45% conversion losses. However, each utilization option has its own optimal harvest date, determined by biomass yield, biomass quality, and cutting tolerance. By applying an autumn green harvest for anaerobic digestion and a delayed harvest for combustion, the conversion-related energy loss was reduced to an average of 18%. This clearly shows that the delayed harvest required to maintain biomass quality for combustion is accompanied by high energy losses through yield reduction over winter. The pre-winter harvest applied in the biogas utilization pathway avoids these yield losses and largely compensates for the conversion-related energy losses of anaerobic digestion.


Frontiers in Plant Science | 2017

Extending Miscanthus Cultivation with Novel Germplasm at Six Contrasting Sites

Olena Kalinina; Christopher Nunn; Ruth Sanderson; Astley Hastings; Tim van der Weijde; Mensure Özgüven; Ivan Tarakanov; Heinrich Schüle; Luisa M. Trindade; Oene Dolstra; Kai Uwe Schwarz; Yasir Iqbal; Andreas Kiesel; Michal Mos; Iris Lewandowski; John Clifton-Brown

Miscanthus is a genus of perennial rhizomatous grasses with C4 photosynthesis which is indigenous in a wide geographic range of Asian climates. The sterile clone, Miscanthus × giganteus (M. × giganteus), is a naturally occurring interspecific hybrid that has been used commercially in Europe for biomass production for over a decade. Although, M. × giganteus has many outstanding performance characteristics including high yields and low nutrient offtakes, commercial expansion is limited by cloning rates, slow establishment to a mature yield, frost, and drought resistance. In this paper, we evaluate the performance of 13 novel germplasm types alongside M. × giganteus and horticultural “Goliath” in trials in six sites (in Germany, Russia, The Netherlands, Turkey, UK, and Ukraine). Mean annual yields across all the sites and genotypes increased from 2.3 ± 0.2 t dry matter ha−1 following the first year of growth, to 7.3 ± 0.3, 9.5 ± 0.3, and 10.5 ± 0.2 t dry matter ha−1 following the second, third, and fourth years, respectively. The highest average annual yields across locations and four growth seasons were observed for M. × giganteus (9.9 ± 0.7 t dry matter ha−1) and interspecies hybrid OPM-6 (9.4 ± 0.6 t dry matter ha−1). The best of the new hybrid genotypes yielded similarly to M. × giganteus at most of the locations. Significant effects of the year of growth, location, species, genotype, and interplay between these factors have been observed demonstrating strong genotype × environment interactions. The highest yields were recorded in Ukraine. Time needed for the crop establishment varied depending on climate: in colder climates such as Russia the crop has not achieved its peak yield by the fourth year, whereas in the hot climate of Turkey and under irrigation the yields were already high in the first growing season. We have identified several alternatives to M. × giganteus which have provided stable yields across wide climatic ranges, mostly interspecies hybrids, and also Miscanthus genotypes providing high biomass yields at specific geographic locations. Seed-propagated interspecific and intraspecific hybrids, with high stable yields and cheaper reliable scalable establishment remain a key strategic objective for breeders.


Frontiers in Plant Science | 2017

Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries

Christopher Nunn; Astley Hastings; Olena Kalinina; Mensure Özgüven; Heinrich Schüle; Ivan Tarakanov; Tim van der Weijde; Aleksander A. Anisimov; Yasir Iqbal; Andreas Kiesel; Nikolay Khokhlov; Jon McCalmont; Heike Meyer; Michal Mos; Kai-Uwe Schwarz; Luisa M. Trindade; Iris Lewandowski; John Clifton-Brown

The development of models to predict yield potential and quality of a Miscanthus crop must consider climatic limitations and the duration of growing season. As a biomass crop, yield and quality are impacted by the timing of plant developmental transitions such as flowering and senescence. Growth models are available for the commercially grown clone Miscanthus x giganteus (Mxg), but breeding programs have been working to expand the germplasm available, including development of interspecies hybrids. The aim of this study was to assess the performance of diverse germplasm beyond the range of environments considered suitable for a Miscanthus crop to be grown. To achieve this, six field sites were planted as part of the EU OPTIMISC project in 2012 in a longitudinal gradient from West to East: Wales—Aberystwyth, Netherlands—Wageningen, Stuttgart—Germany, Ukraine—Potash, Turkey—Adana, and Russia—Moscow. Each field trial contained three replicated plots of the same 15 Miscanthus germplasm types. Through the 2014 growing season, phenotypic traits were measured to determine the timing of developmental stages key to ripening; the tradeoff between growth (yield) and quality (biomass ash and moisture content). The hottest site (Adana) showed an accelerated growing season, with emergence, flowering and senescence occurring before the other sites. However, the highest yields were produced at Potash, where emergence was delayed by frost and the growing season was shortest. Flowering triggers varied with species and only in Mxg was strongly linked to accumulated thermal time. Our results show that a prolonged growing season is not essential to achieve high yields if climatic conditions are favorable and in regions where the growing season is bordered by frost, delaying harvest can improve quality of the harvested biomass.


Frontiers in Plant Science | 2017

Harvest time optimisation for combustion quality of different miscanthus genotypes across Europe

Yasir Iqbal; Andreas Kiesel; Moritz Wagner; Christopher Nunn; Olena Kalinina; Astley Hastings; John Clifton-Brown; Iris Lewandowski

Delayed harvest can improve the quality of miscanthus biomass for combustion and enhance the long-term sustainability of the crop, despite accompanying yield losses. The aim of this study is to identify the optimal harvesting time, which can deliver improved biomass quality for combustion of novel miscanthus genotypes at various sites across Europe, without high yield losses and without compromising their environmental performance. The relevant field trials were established as part of the European project OPTIMISC with 15 genotypes at six sites across Europe. For this study, the five highest yielding genotypes from each germplasm group and three sites with contrasting climatic conditions (Stuttgart, Germany; Adana, Turkey; and Moscow, Russia) were selected for assessment. The biomass samples were collected between August and March (depending on site) and subjected to mineral and ash content analysis. At Stuttgart, the delay in harvesting time led to a significant variation in combustion quality characteristics, such as N content (0.64–0.21%), ash content (5.15–2.60%), and ash sintering index (1.30–0.20). At Adana, the delay in harvesting time decreased the N content from 0.62 to 0.23%, ash content from 10.63 to 3.84%, and sintering index from 0.54 to 0.07. At Moscow, the impact of delay in harvesting was not significant, except for N, Mg, and ash sintering index. Overall, a delay in harvesting time improved the combustion quality characteristics of each genotype, but at the expense of yield. Yield losses of up to 49% in Stuttgart and Adana and 21% for Moscow were recorded, with variations between genotypes and sites. The harvesting time also affected nutrient offtake, which in turn influences the long-term environmental performance of the crop. The highest N, P, and K offtakes were recorded at Stuttgart for each harvesting time except for final harvest (March), where Moscow had the highest N offtake. This study describes the three criteria (biomass quality, yield losses, nutrient offtake) for determining the ideal harvesting time, which gives the best compromise between dry matter yields and biomass quality characteristics without negatively affecting the environmental performance of the crop.


Bioresource Technology | 2016

Efficiency of single stage- and two stage pretreatment in biomass with different lignin content

M.A. Kärcher; Yasir Iqbal; Iris Lewandowski; Thomas Senn

In current study the enzymatic glucose yields of miscanthus and wheat straw were compared after single stage- and two stage pretreatment with dilute sulfuric acid at different pretreatment severities. Glucose yields after two stage pretreatment were higher than after single stage pretreatment in miscanthus. Whereas wheat straw had higher glucose yields after single stage pretreatment. The study shows that two stage pretreatment has a negative effect on glucose yield in biomass with low not-acid-degradable lignin content and a positive one in biomass with high not-acid-degradable lignin content. The not-acid-degradable lignin fraction offers a higher degree of protection of the whole lignin structure against chemical attacks by mineral acids. More severe pretreatment conditions were needed to achieve a sufficient breakup of the lignin structure. But more severe conditions enhance resin formation, leading to lower enzyme activity and reduced carbohydrate yields.


Gcb Bioenergy | 2018

Characterization of Miscanthus cell wall polymers

Judith Schäfer; Melinda Sattler; Yasir Iqbal; Iris Lewandowski; Mirko Bunzel

Efficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of p‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for Miscanthus sinensis.

Collaboration


Dive into the Yasir Iqbal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa M. Trindade

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim van der Weijde

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mensure Özgüven

Konya Food and Agriculture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oene Dolstra

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge