Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasmine Rangel Vieira is active.

Publication


Featured researches published by Yasmine Rangel Vieira.


Nature | 2017

Zika virus evolution and spread in the Americas

Hayden C. Metsky; Christian B. Matranga; Shirlee Wohl; Stephen F. Schaffner; Catherine A. Freije; Sarah M. Winnicki; Kendra West; James Qu; Mary Lynn Baniecki; Adrianne Gladden-Young; Aaron E. Lin; Christopher Tomkins-Tinch; Simon H. Ye; Daniel J. Park; Cynthia Y. Luo; Kayla G. Barnes; Rickey R. Shah; Bridget Chak; Giselle Barbosa-Lima; Edson Delatorre; Yasmine Rangel Vieira; Lauren M. Paul; Amanda L. Tan; Carolyn M. Barcellona; Mario C. Porcelli; Chalmers Vasquez; Andrew Cannons; Marshall R. Cone; Kelly N. Hogan; Edgar W. Kopp

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Scientific Reports | 2017

The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication.

Carolina Q. Sacramento; Gabrielle R. de Melo; Caroline S. de Freitas; Natasha Rocha; Lucas V. B. Hoelz; Milene Miranda; Natalia Fintelman-Rodrigues; Andressa Marttorelli; André C. Ferreira; Giselle Barbosa-Lima; Juliana L. Abrantes; Yasmine Rangel Vieira; Mônica M. Bastos; Eduardo de Mello Volotão; Estevão Portela Nunes; Diogo A. Tschoeke; Luciana Leomil; Erick Correia Loiola; Pablo Trindade; Stevens K. Rehen; Fernando A. Bozza; Patricia T. Bozza; Núbia Boechat; Fabiano L. Thompson; Ana Maria Bispo de Filippis; Karin Brüning; Thiago Moreno L. Souza

Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.


Scientific Reports | 2017

Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae

André C. Ferreira; Camila Zaverucha-do-Valle; Patricia Alves Reis; Giselle Barbosa-Lima; Yasmine Rangel Vieira; Mayara Mattos; Priscila de Paiva Silva; Carolina Q. Sacramento; Hugo C. Castro Faria Neto; Loraine Campanati; Amilcar Tanuri; Karin Brüning; Fernando A. Bozza; Patricia T. Bozza; Thiago Moreno L. Souza

Zika virus (ZIKV) causes significant public health concerns because of its association with congenital malformations, neurological disorders in adults, and, more recently, death. Considering the necessity to mitigate ZIKV-associated diseases, antiviral interventions are an urgent necessity. Sofosbuvir, a drug in clinical use against hepatitis C virus (HCV), is among the FDA-approved substances endowed with anti-ZIKV activity. In this work, we further investigated the in vivo activity of sofosbuvir against ZIKV. Neonatal Swiss mice were infected with ZIKV (2 × 107 PFU) and treated with sofosbuvir at 20 mg/kg/day, a concentration compatible with pre-clinical development of this drug. We found that sofosbuvir reduced acute levels of ZIKV from 60 to 90% in different anatomical compartments, such as the blood plasma, spleen, kidney, and brain. Early treatment with sofosbuvir doubled the percentage and time of survival of ZIKV-infected animals. Sofosbuvir also prevented the acute neuromotor impairment triggered by ZIKV. In the long-term behavioural analysis of ZIKV-associated sequelae, sofosbuvir prevented loss of hippocampal- and amygdala-dependent memory. Our results indicate that sofosbuvir inhibits ZIKV replication in vivo, which is consistent with the prospective necessity of antiviral drugs to treat ZIKV-infected individuals.


Science Translational Medicine | 2017

Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum

Irene Bosch; Helena de Puig; Megan Hiley; Marc Carré-Camps; Federico Perdomo-Celis; Carlos F. Narváez; Doris M. Salgado; Dewahar Senthoor; Madeline O’Grady; Elizabeth Phillips; Ann Fiegen Durbin; Diana Fandos; Hikaru Miyazaki; Chun-Wan Yen; Margarita Gélvez-Ramírez; Rajas V. Warke; Lucas S. Ribeiro; Mauro M. Teixeira; Roque P. Almeida; José Esteban Muñoz-Medina; Juan E. Ludert; Maurício Lacerda Nogueira; Tatiana Elias Colombo; Ana Carolina Bernardes Terzian; Patricia T. Bozza; Andrea Surrage Calheiros; Yasmine Rangel Vieira; Giselle Barbosa-Lima; Alexandre Gomes Vizzoni; José Cerbino-Neto

A low-cost, equipment-free rapid antigen test distinguishes dengue virus serotypes and Zika virus in patient sera without detectable cross-reactivity. Distinguishing dengue from Zika More than mere summer pests, mosquitoes can transmit viruses, such as dengue and Zika. Diagnosing infections of these related flaviviruses can be difficult because of cross-reactivity in diagnostic tests. Bosch et al. developed monoclonal antibodies to detect viral nonstructural 1 (NS1) protein antigens specific to dengue and Zika. Incorporating the antibodies into an immunochromatography format yielded a rapid diagnostic assay that produces a visual readout in the presence of NS1. The assay identified the four dengue serotypes and Zika viral infections without cross-reaction when testing human serum samples from endemic areas in Central and South America and India. This approach could be useful for developing rapid diagnostics for other emerging pathogens. The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1–4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1–4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction–positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.


PLOS ONE | 2017

Cynomolgus monkeys are successfully and persistently infected with hepatitis E virus genotype 3 (HEV-3) after long-term immunosuppressive therapy

Noemi Rovaris Gardinali; Juliana Rodrigues Guimarães; Juliana Gil Melgaço; Yohan Britto Kevorkian; Fernanda de Oliveira Bottino; Yasmine Rangel Vieira; Aline Campos de Azevedo da Silva; Douglas Pereira Pinto; Laís Bastos da Fonseca; Leandro Schiavo Vilhena; Edilson Uiechi; Maria Cristina Carlan da Silva; Julio Moran; Renato Sergio Marchevsky; Oswaldo Gonçalves Cruz; Rodrigo Alejandro Arellano Otonel; Amauri Alcindo Alfieri; Jaqueline Mendes de Oliveira; Ana Maria Coimbra Gaspar; Marcelo Alves Pinto; Libbs Indústria Farmacêutica. Embu, São Paulo, Brasil.; Julio Moran Laboratories. Ebmatingen, Zurich, Switzerland.

Epidemiological studies found that hepatitis E virus genotype 3 (HEV-3) infection was associated with chronic hepatitis and cirrhosis in immunocompromised patients. Our study aimed to investigate the relationship between the host immunosuppressive status and the occurrence of HEV-related chronic hepatitis. Here we describe a successful experimental study, using cynomolgus monkeys previously treated with tacrolimus, a potent calcineurin inhibitor immunosuppressant, and infected with a Brazilian HEV-3 strain isolated from naturally infected pigs. HEV infected monkeys were followed up during 160 days post infection (dpi) by clinical signs; virological, biochemical and haematological parameters; and liver histopathology. The tacrolimus blood levels were monitored throughout the experiment. Immunosuppression was confirmed by clinical and laboratorial findings, such as: moderate weight loss, alopecia, and herpes virus opportunistic infection. In this study, chronic HEV infection was characterized by the mild increase of liver enzymes serum levels; persistent RNA viremia and viral faecal shedding; and liver histopathology. Three out of four immunosuppressed monkeys showed recurrent HEV RNA detection in liver samples, evident hepatocellular ballooning degeneration, mild to severe macro and microvesicular steatosis (zone 1), scattered hepatocellular apoptosis, and lobular focal inflammation. At 69 dpi, liver biopsies of all infected monkeys revealed evident ballooning degeneration (zone 3), discrete hepatocellular apoptosis, and at most mild portal and intra-acinar focal inflammation. At 160 dpi, the three chronically HEV infected monkeys showed microscopic features (piecemeal necrosis) corresponding to chronic hepatitis in absence of fibrosis and cirrhosis in liver parenchyma. Within 4-months follow up, the tacrolimus-immunosuppressed cynomolgus monkeys infected with a Brazilian swine HEV-3 strain exhibited more severe hepatic lesions progressing to chronic hepatitis without liver fibrosis, similarly as shown in tacrolimus-immunosuppressed solid organ transplant (SOT) recipients. The cause-effect relationship between HEV infection and tacrolimus treatment was confirmed in this experiment.


Journal of Genetics and Genome Research | 2015

Application of Synthetic Standard Curves for Absolute Quantification of Hepatitis A and E by Real-Time PCR

Renata Santos Tourinho; Camilla Rodrigues de Almeida; Andreza Salvio Lemos; Yasmine Rangel Vieira; Jonas Schmidt-Chanasit; Vanessa Salete de Paula

C l i n M e d International Library Citation: Tourinho RS, de Almeida CR, Lemos AS, Gardinali NR, Vieira YR, et al. (2015) Application of Synthetic Standard Curves for Absolute Quantification of Hepatitis A and E by Real-Time PCR. J Genet Genome Res 2:013 Received: February 26, 2015: Accepted: March 20, 2015: Published: March 23, 2015 Copyright:


World Journal of Hepatology | 2016

Changes in cellular proliferation and plasma products are associated with liver failure

Juliana Gil Melgaço; Frederico M. Soriani; Pedro Henrique Ferreira Sucupira; Leonardo Assaf Pinheiro; Yasmine Rangel Vieira; Jaqueline Mendes de Oliveira; Lia Laura Lewis-Ximenez; Cristina Carvalho Vianna Araújo; Lúcio Filgueiras Pacheco-Moreira; Gustavo B. Menezes; Oswaldo Gonçalves Cruz; Claudia Lamarca Vitral; Marcelo Alves Pinto

AIM To study the differences in immune response and cytokine profile between acute liver failure and self-limited acute hepatitis. METHODS Forty-six patients with self-limited acute hepatitis (AH), sixteen patients with acute liver failure (ALF), and twenty-two healthy subjects were involved in this study. The inflammatory and anti-inflammatory products in plasma samples were quantified using commercial enzyme-linked immunoassays and quantitative real-time PCR. The cellular immune responses were measured by proliferation assay using flow cytometry. The groups were divided into viral- and non-viral-induced self-limited AH and ALF. Thus, we worked with five groups: Hepatitis A virus (HAV)-induced self-limited acute hepatitis (HAV-AH), HAV-induced ALF (HAV-ALF), non-viral-induced self-limited acute hepatitis (non-viral AH), non-viral-induced acute liver failure (non-viral ALF), and healthy subjects (HC). Comparisons among HAV and non-viral-induced AH and ALF were performed. RESULTS The levels of mitochondrial DNA (mtDNA) and the cytokines investigated [interleukin (IL)-6, IL-8, IL-10, interferon gamma, and tumor necrosis factor] were significantly increased in ALF patients, independently of etiology (P < 0.05). High plasma mtDNA and IL-10 were the best markers associated with ALF [mtDNA: OR = 320.5 (95%CI: 14.42-7123.33), P < 0.0001; and IL-10: OR = 18.8 (95%CI: 1.38-257.94), P = 0.028] and death [mtDNA: OR = 12.1 (95%CI: 2.57-57.07), P = 0.002; and IL-10: OR = 8.01 (95%CI: 1.26-50.97), P = 0.027]. In the cellular proliferation assay, NKbright, NKT and regulatory T cells (TReg) predominated in virus-specific stimulation in HAV-induced ALF patients with an anergic behavior in the cellular response to mitotic stimulation. Therefore, in non-viral-induced ALF, anergic behavior of activated T cells was not observed after mitotic stimulation, as expected and as described by the literature. CONCLUSION mtDNA and IL-10 may be predictors of ALF and death. TReg cells are involved in immunological disturbance in HAV-induced ALF.


Annals of Agricultural and Environmental Medicine | 2015

Serological and molecular evidence of hepadnavirus infection in swine.

Yasmine Rangel Vieira; Marcelle Fm Silva; Débora Rl Santos; Antônio A Vieira; Janice Reis Ciacci-Zanella; Gonzalo Barquero; Barbara V. Lago; Selma A. Gomes; Marcelo Alves Pinto; Vanessa Salete de Paula

INTRODUCTION AND OBJECTIVE Recently, investigations in a swine herd identified evidence of the existence of a novel member of the Hepadnavirus family endemic in swine. The aim of this study was to investigate the serological and molecular markers of Hepadnavirus circulation in Brazilian domestic swine and wild boar herds, and to evaluate the identity with HBV and other Hepadnaviruses reported previously. MATERIALS AND METHODS For the study, 376 swine were screened for hepatitis B virus serological markers. Analyses were performed in serum samples using commercial enzyme-linked immunosorbent assay (ELISA) kits (DiaSorin®) for anti-HBc, HBsAg and anti-HBs. Reactive and undetermined swine serum samples were selected to perform DNA viral extraction (QIAamp DNA Mini Kit, Qiagen®), partial genome amplification and genome sequencing. RESULTS From 376 swine samples analysed, 28 (7.45%) were reactive to anti-HBc, 3 (0.80%) to HBsAg and 6 (1.6%) to anti-HBs. Besides, more 17 (4.52%) swine samples analyzed were classified in the grey zone of the EIA test to anti-HBc and 2 (0.53%) to HBsAg. From 49 samples molecularly analyzed after serological trial, 4 samples showed a positive result for the qualitative PCR for Hepadnavirus. Phylogenetic reconstruction using partial genome sequencing (360 bp) of 3 samples showed similarity with HBV with 90.8-96.3% of identity. CONCLUSIONS Serological and molecular data showed evidence of the circulation of a virus similar to hepatitis B virus in swine.


Emerging Infectious Diseases | 2017

Detection of Zika Virus in April 2013 Patient Samples, Rio de Janeiro, Brazil

Sonia Regina Lambert Passos; Maria Angelica Borges dos Santos; José Cerbino-Neto; Sibelle Nogueira Buonora; Thiago Moreno L. Souza; Raquel de Vasconcellos Carvalhaes de Oliveira; Alexandre Vizzoni; Giselle Barbosa-Lima; Yasmine Rangel Vieira; Marcondes Silva de Lima; Yara Hahr Marques Hökerberg

We tested 210 dengue virus‒negative samples collected from febrile patients during a dengue virus type 4 outbreak in Rio de Janeiro in April 2013 and found 3 samples positive for Zika virus. Our findings support previously published entomological data suggesting Zika virus was introduced into Brazil during October 2012–May 2013.


bioRxiv | 2018

Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo

Carolina de Freitas; Luiza M. Higa; Carolina Q. Sacramento; André Teixeira da Silva Ferreira; Patricia Alves Reis; Rodrigo Delvecchio; Fábio L. Monteiro; Giselle Barbosa-Lima; Yasmine Rangel Vieira; Mayara Mattos; Lucas Villas Boas Hoelz; Rennan Leme; Mônica M. Bastos; Fernando A. Bozza; Patricia T. Bozza; Núbia Boechat; Amilcar Tanuri; Thiago Moreno L. Souza

Yellow fever virus (YFV) is a member of the Flaviviridae family, that causes major mortality. In Brazil, YFV activity increased in the last years. It has been registered that sylvatic, instead of urban, yellow fever (YF) leads our contemporary public health concern. Low vaccinal coverage leaves the human population near the jangle vulnerable to the outbreak, making it necessary to identify therapeutic options. Repurposing of clinically approved antiviral drugs represents an alternative for such identification. Other Flaviviruses, such Zika (ZIKV) and dengue (DENV) viruses, are susceptible to Sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Moreover, sofosbuvir has a safety record on critically ill hepatic patients, making it an attractive option. Our data show that YFV RNA polymerase uses conserved amino acid resides for nucleotide binding to dock sofosbuvir. This drug inhibited YFV replication in different lineages of human hepatoma cells, Huh-7 and HepG2, with EC50 value of 4.8 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice from mortality and weight loss. Our pre-clinical results indicate that sofosbuvir could represent an option against YFV.

Collaboration


Dive into the Yasmine Rangel Vieira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thiago Moreno L. Souza

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge