Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuhiko Matsumoto is active.

Publication


Featured researches published by Yasuhiko Matsumoto.


Molecular Microbiology | 2005

Silkworm pathogenic bacteria infection model for identification of novel virulence genes.

Chikara Kaito; Kenji Kurokawa; Yasuhiko Matsumoto; Yutaka Terao; Shigetada Kawabata; Shigeyuki Hamada; Kazuhisa Sekimizu

Silkworms are killed by injection of pathogenic bacteria, such as Staphylococcus aureus and Streptococcus pyogenes, into the haemolymph. Gene disruption mutants of S. aureus whose open reading frames were previously uncharacterized and that are conserved among bacteria were examined for their virulence in silkworms. Of these 100 genes, three genes named cvfA, cvfB, and cvfC were required for full virulence of S. aureus in silkworms. Haemolysin production was decreased in these mutants. The cvfA and cvfC mutants also had attenuated virulence in mice. S. pyogenes cvfA‐disrupted mutants produced less exotoxin and had attenuated virulence in both silkworms and mice. These results indicate that the silkworm‐infection model is useful for identifying bacterial virulence genes.


Molecular Microbiology | 2006

Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus

Chikara Kaito; Daisuke Morishita; Yasuhiko Matsumoto; Kenji Kurokawa; Kazuhisa Sekimizu

We previously reported that the cvfA gene is a virulence regulatory gene in Staphylococcus aureus. Here, we identified a novel gene named sarZ that acts as a multicopy suppressor of decreased haemolysin production in the cvfA deletion mutant. The amount of sarZ transcripts was decreased in the cvfA mutant. The sarZ‐deletion mutant produced less haemolysin and attenuated virulence in a silkworm‐infection model and a mouse‐infection model. The amino acid sequence of the sarZ gene product had 19% identity with the transcription factor MarR in Escherichia coli, and the internal region contained a winged helix–turn–helix motif (wHTH), a known DNA binding domain. Purified recombinant SarZ protein had binding affinity for the promoter region of the hla gene that encodes α‐haemolysin. SarZ mutant proteins with an amino acid substitution in the N‐terminal region or in the wHTH motif had significantly decreased DNA binding. The mutated sarZ genes encoding SarZ mutant proteins with a low affinity for DNA did not complement the decreased haemolysin production or the attenuated killing ability against silkworms in the sarZ mutant. These results suggest that the DNA binding activity of the SarZ protein is required for virulence in S. aureus.


PLOS ONE | 2011

An Invertebrate Hyperglycemic Model for the Identification of Anti-Diabetic Drugs

Yasuhiko Matsumoto; Eriko Sumiya; Takuya Sugita; Kazuhisa Sekimizu

The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.


PLOS ONE | 2011

Intestinal Resident Yeast Candida glabrata Requires Cyb2p-Mediated Lactate Assimilation to Adapt in Mouse Intestine

Keigo Ueno; Yasuhiko Matsumoto; Jun Uno; Kaname Sasamoto; Kazuhisa Sekimizu; Yuki Kinjo; Hiroji Chibana

The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata.


PLOS ONE | 2008

A Novel Gene, fudoh, in the SCCmec Region Suppresses the Colony Spreading Ability and Virulence of Staphylococcus aureus

Chikara Kaito; Yosuke Omae; Yasuhiko Matsumoto; Makiko Nagata; Hiroki Yamaguchi; Taiji Aoto; Teruyo Ito; Keiichi Hiramatsu; Kazuhisa Sekimizu

Staphylococcus aureus colonies can spread on soft agar plates. We compared colony spreading of clinically isolated methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). All MSSA strains showed colony spreading, but most MRSA strains (73%) carrying SCCmec type-II showed little colony spreading. Deletion of the entire SCCmec type-II region from these MRSA strains restored colony spreading. Introduction of a novel gene, fudoh, carried by SCCmec type-II into Newman strain suppressed colony spreading. MRSA strains with high spreading ability (27%) had no fudoh or a point-mutated fudoh that did not suppress colony spreading. The fudoh-transformed Newman strain had decreased exotoxin production and attenuated virulence in mice. Most community-acquired MRSA strains carried SCCmec type-IV, which does not include fudoh, and showed high colony spreading ability. These findings suggest that fudoh in the SCCmec type-II region suppresses colony spreading and exotoxin production, and is involved in S. aureus pathogenesis.


Journal of Applied Microbiology | 2012

Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with Cryptococcus neoformans

Yasuhiko Matsumoto; Shinya Miyazaki; D.H. Fukunaga; Kiminori Shimizu; Susumu Kawamoto; Kazuhisa Sekimizu

Aims:  To develop an in vivo system that could quantitatively evaluate the therapeutic effects of antifungal drugs using a silkworm infection model with Cryptococcus neoformans.


Infection and Immunity | 2007

Regulation of exoprotein gene expression by the Staphylococcus aureus cvfB gene

Yasuhiko Matsumoto; Chikara Kaito; Daisuke Morishita; Kenji Kurokawa; Kazuhisa Sekimizu

ABSTRACT We previously reported that the cvfB gene (SA1223) of Staphylococcus aureus is responsible for the virulence of this pathogenic bacterium. We show here that the cvfB gene regulates exoprotein gene expression. In a cvfB gene deletion mutant, hemolysin, DNase, and protease production were decreased, whereas protein A expression was increased. The amount of RNAIII, the transcript from the P3 promoter in the agr locus that regulates the expression of various virulence factors, was also reduced in the cvfB mutant. In addition, P2 and P3 promoter activity in the agr locus was decreased in the mutant. Under the genetic background of the agr-null mutation, cvfB gene disruption decreased the production levels of DNase and protease. Moreover, the cvfB and agr double mutant was less virulent than the agr mutant in silkworms. These results suggest that the cvfB gene product contributes to the expression of virulence factors and to pathogenicity via both agr-dependent and agr-independent pathways.


BMC Clinical Pharmacology | 2012

Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

Yoshinori Inagaki; Yasuhiko Matsumoto; Keiko Kataoka; Naoya Matsuhashi; Kazuhisa Sekimizu

BackgroundOur previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later.ResultsInjection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity.ConclusionsThese findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals.


Structure | 2010

Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module.

Yasuhiko Matsumoto; Qingping Xu; Shinya Miyazaki; Chikara Kaito; Carol L. Farr; Herbert L. Axelrod; Hsiu-Ju Chiu; Heath E. Klock; Mark W. Knuth; Mitchell D. Miller; Marc-André Elsliger; Ashley M. Deacon; Adam Godzik; Scott A. Lesley; Kazuhisa Sekimizu; Ian A. Wilson

CvfB is a conserved regulatory protein important for the virulence of Staphylococcus aureus. We show here that CvfB binds RNA. The crystal structure of the CvfB ortholog from Streptococcus pneumoniae at 1.4 A resolution reveals a unique RNA binding protein that is formed from a concatenation of well-known structural modules that bind nucleic acids: three consecutive S1 RNA binding domains and a winged helix (WH) domain. The third S1 and the WH domains are required for cooperative RNA binding and form a continuous surface that likely contributes to the RNA interaction. The WH domain is critical to CvfB function and contains a unique sequence motif. Thus CvfB represents a novel assembly of modules for binding RNA.


Scientific Reports | 2015

Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes

Yasuhiko Matsumoto; Masaki Ishii; Yohei Hayashi; Shinya Miyazaki; Takuya Sugita; Eriko Sumiya; Kazuhisa Sekimizu

We previously reported that sugar levels in the silkworm hemolymph, i.e., blood, increase immediately (within 1 h) after intake of a high-glucose diet, and that the administration of human insulin decreases elevated hemolymph sugar levels in silkworms. In this hyperglycemic silkworm model, however, administration of pioglitazone or metformin, drugs used clinically for the treatment of type II diabetes, have no effect. Therefore, here we established a silkworm model of type II diabetes for the evaluation of anti-diabetic drugs such as pioglitazone and metformin. Silkworms fed a high-glucose diet over a long time-period (18 h) exhibited a hyperlipidemic phenotype. In these hyperlipidemic silkworms, phosphorylation of JNK, a stress-responsive protein kinase, was enhanced in the fat body, an organ that functionally resembles the mammalian liver and adipose tissue. Fat bodies isolated from hyperlipidemic silkworms exhibited decreased sensitivity to human insulin. The hyperlipidemic silkworms have impaired glucose tolerance, characterized by high fasting hemolymph sugar levels and higher hemolymph sugar levels in a glucose tolerance test. Administration of pioglitazone or metformin improved the glucose tolerance of the hyperlipidemic silkworms. These findings suggest that the hyperlipidemic silkworms are useful for evaluating the hypoglycemic activities of candidate drugs against type II diabetes.

Collaboration


Dive into the Yasuhiko Matsumoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge