Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuhiro Shimane is active.

Publication


Featured researches published by Yasuhiro Shimane.


International Journal of Systematic and Evolutionary Microbiology | 2010

Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt

Yasuhiro Shimane; Yuji Hatada; Hiroaki Minegishi; Toru Mizuki; Akinobu Echigo; Masayuki Miyazaki; Yukari Ohta; Ron Usami; William D. Grant; Koki Horikoshi

Strain YSM-123(T) was isolated from commercial salt made from Japanese seawater in Niigata prefecture. Optimal NaCl and Mg(2+) concentrations for growth were 4.0-4.5 M and 5 mM, respectively. The isolate was a mesophilic and slightly alkaliphilic haloarchaeon, whose optimal growth temperature and pH were 37 °C and pH 8.0-9.0. Phylogenetic analysis based on 16S rRNA gene sequence analysis suggested that strain YSM-123(T) is a member of the phylogenetic group defined by the family Halobacteriaceae, but there were low similarities to type strains of other genera of this family (≤90 %); for example, Halococcus (similarity <89 %), Halostagnicola (<89 %), Natronolimnobius (<89 %), Halobiforma (<90 %), Haloterrigena (<90 %), Halovivax (<90 %), Natrialba (<90 %), Natronobacterium (<90 %) and Natronococcus (<90 %). The G+C content of the DNA was 63 mol%. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, disulfated diglycosyl diether and an unknown glycolipid. On the basis of the data presented, we propose that strain YSM-123(T) should be placed in a new genus and species, Natronoarchaeum mannanilyticum gen. nov., sp. nov. The type strain of Natronoarchaeum mannanilyticum is strain YSM-123(T) (=JCM 16328(T) =CECT 7565(T)).


International Journal of Systematic and Evolutionary Microbiology | 2013

Loktanella cinnabarina sp. nov., isolated from a deep subseafloor sediment, and emended description of the genus Loktanella

Taishi Tsubouchi; Yasuhiro Shimane; Kozue Mori; Masayuki Miyazaki; Akihiro Tame; Katsuyuki Uematsu; Tadashi Maruyama; Yuji Hatada

A Gram-stain-negative, aerobic, heterotrophic and salt-tolerant bacterium, designated strain LL-001(T), was isolated from a deep subseafloor sediment in Japanese waters. Cells were non-motile rods and colonies were smooth, convex, circular and vermilion. The conditions for growth were 15-35 °C, pH 5.5-7.5 and 1-8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain LL-001(T) belonged to the genus Loktanella within the family Rhodobacteraceae of the class Alphaproteobacteria. 16S rRNA gene sequence similarity between strain LL-001(T) and members of the genus Loktanella was 94.5-98.5 %; the highest sequence similarity was with Loktanella hongkongensis UST950701-009P(T). DNA-DNA relatedness between strain LL-001(T) and L. hongkongensis UST950701-009P(T) was 41.5-43.6 %. The DNA G+C content of strain LL-001(T) was 69.3 mol%. On the basis of biochemical features and 16S rRNA gene sequence comparison, strain LL-001(T) is considered to represent a novel species of the genus Loktanella, for which the name Loktanella cinnabarina sp. nov. is proposed. The type strain is LL-001(T) ( = JCM 18161(T) = CECT 8072(T)). The description of the genus Loktanella is also emended.


International Journal of Systematic and Evolutionary Microbiology | 2013

Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment

Taishi Tsubouchi; Yasuhiro Shimane; Keiko Usui; Shigeru Shimamura; Kozue Mori; Toshiki Hiraki; Akihiro Tame; Katsuyuki Uematsu; Tadashi Maruyama; Yuji Hatada

A novel Gram-negative, aerobic, psychrotolerant, alkali-tolerant, heterotrophic and dimorphic prosthecate bacterium, designated strain TAR-001(T), was isolated from deep-sea floor sediment in Japan. Cells of this strain had a dimorphic life cycle and developed an adhesive stalk at a site not coincident with the centre of the cell pole, and the other type of cell, a swarm cell, had a polar flagellum. Colonies were glossy, viscous and yellowish-white in colour. The temperature, pH and salt concentration range for growth were 2-41 °C, pH 6.5-10.0 and 1-4% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain TAR-001(T) belongs to the family Caulobacteraceae of the class Alphaproteobacteria, and lies between the genus Brevundimonas and the genus Caulobacter. Levels of similarity between the 16S rRNA gene sequence of strain TAR-001(T) and those of the type strains of Brevundimonas species were 93.3-95.7%; highest sequence similarity was with the type strain of Brevundimonas diminuta. Levels of sequence similarity between those of the type strains of Caulobacter species were 94.9-96.0%; highest sequence similarity was with the type strain of Caulobacter mirabilis. The G+C content of strain TAR-001(T) was 67.6 mol%. Q-10 was the major respiratory isoprenoid quinone. The major fatty acids were C18:1ω7c and C16:0, and the presence of 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1→4)-α-D-glucopyranuronosyl]glycerol suggests strain TAR-001(T) is more closely to the genus Brevundimonas than to the genus Caulobacter. The mean DNA-DNA hybridization levels between strain TAR-001(T) and the type strains of two species of the genus Brevundimonas were higher than that of the genus Caulobacter. On the basis of polyphasic biological features and the 16S rRNA gene sequence comparison presented here, strain TAR-001(T) is considered to represent a novel species of the genus Brevundimonas, for which the name Brevundimonas abyssalis sp. nov. is proposed; the type strain is TAR-001(T) (=JCM 18150(T)=CECT 8073(T)).


International Journal of Systematic and Evolutionary Microbiology | 2014

Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment

Taishi Tsubouchi; Sumihiro Koyama; Kozue Mori; Yasuhiro Shimane; Keiko Usui; Maki Tokuda; Akihiro Tame; Katsuyuki Uematsu; Tadashi Maruyama; Yuji Hatada

A novel Gram-stain-negative, aerobic, heterotrophic, stalked and capsulated bacterium with potential denitrification ability, designated strain TAR-002(T), was isolated from deep seafloor sediment in Japan. Colonies lacked lustre, and were viscous and translucent white. The ranges of temperature, pH and salt concentration for growth were 8-30 °C, pH 6.0-10.0 and 1-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain TAR-002(T) belongs to the genus Brevundimonas of the class Alphaproteobacteria. Levels of similarity between the 16S rRNA gene sequence of strain TAR-002(T) and those of the type strains of species of the genus Brevundimonas were 93.5-98.9%; the most closely related species was Brevundimonas basaltis. In DNA-DNA hybridization assays between strain TAR-002(T) and its phylogenetic neighbours, Brevundimonas lenta DS-18(T), B. basaltis J22(T), Brevundimonas subvibrioides ATCC 15264(T) and Brevundimonas alba DSM 4736(T), mean hybridization levels were 6.4-27.7%. The G+C content of strain TAR-002(T) was 70.3 mol%. Q-10 was the major respiratory isoprenoid quinone. The major fatty acids were C(18:1)ω7c and C(16:0), and the presence of 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1 → 4)-α-D-glucopyranuronosyl]glycerol (DGL) indicates the affiliation of strain TAR-002(T) with the genus Brevundimonas. On the basis of biological characteristics and 16S rRNA gene sequence comparisons, strain TAR-002(T) is considered to represent a novel species of the genus Brevundimonas, for which the name Brevundimonas denitrificans sp. nov. is proposed; the type strain is TAR-002(T) ( =NBRC 110107(T) =CECT 8537(T)).


International Journal of Systematic and Evolutionary Microbiology | 2013

Polycladomyces abyssicola gen. nov., sp. nov., a thermophilic filamentous bacterium isolated from hemipelagic sediment

Taishi Tsubouchi; Yasuhiro Shimane; Kozue Mori; Keiko Usui; Toshiki Hiraki; Akihiro Tame; Katsuyuki Uematsu; Tadashi Maruyama; Yuji Hatada

A novel filamentous bacterium, designated strain JIR-001(T), was isolated from hemipelagic sediment in deep seawater. This strain was non-motile, Gram-positive, aerobic, heterotrophic and thermophilic; colonies were of infinite form and ivory coloured with wrinkles between the centre and the edge of the colony on ISP2 medium. The isolate grew aerobically at 55-73 °C with the formation of aerial mycelia; spores were produced singly along the aerial mycelium. These morphological features show some similarities to those of the type strains of some species belonging to the family Thermoactinomycetaceae. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain JIR-001(T) belongs to the family Thermoactinomycetaceae within the class Bacilli. Similarity levels between the 16S rRNA gene sequence of strain JIR-001(T) and those of the type strains of Thermoactinomycetaceae species were 85.5-93.5%; highest sequence similarity was with Melghirimyces algeriensis NariEX(T). In the DNA-DNA hybridization assays between strain JIR-001(T) and its phylogenetic neighbours the mean hybridization levels with Melghirimyces algeriensis NariEX(T), Planifilum fimeticola H0165(T), Planifilum fulgidum 500275(T) and Planifilum yunnanense LA5(T) were 5.3-7.5, 2.3-4.7, 2.1-4.8 and 2.5-4.9%, respectively. The DNA G+C content of strain JIR-001(T) was 55.1 mol%. The major fatty acids were iso-C15:0, iso-C17:0, iso-C16:0 and C16:0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, glucolipid, phosphatidylserine, an amino-group containing phospholipid, an unknown phospholipid and two unknown lipids. The predominant menaquinone was MK-7 and the cell-wall peptidoglycan contained meso-diaminopimelic acid, glutamic acid and alanine. On the basis of phenotypic characteristics and 16S rRNA gene sequence comparisons, strain JIR-001(T) is considered to represent a novel species in a new genus of the family Thermoactinomycetaceae, for which the name Polycladomyces abyssicola gen. nov., sp. nov. is proposed. The type strain of Polycladomyces abyssicola is JIR-001(T) (=JCM 18147(T)=CECT 8074(T)).


International Journal of Systematic and Evolutionary Microbiology | 2012

Natribacillus halophilus gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium isolated from soil.

Akinobu Echigo; Hiroaki Minegishi; Yasuhiro Shimane; Masahiro Kamekura; Ron Usami

A moderately halophilic and alkalitolerant bacterium, designated strain HN30(T), was isolated from garden soil in Japan. Cells of strain HN30(T) were motile, endospore-forming, aerobic, rod-shaped and gram-positive, and contained A1γ meso-diaminopimelic acid-type murein. Growth occurred in 7-23 % (w/v) NaCl (optimum, 10-15 %, w/v), at pH 6.5-10.0 (optimum, pH 8.0-8.5) and at 20-40 °C (optimum, 30 °C). The isoprenoid quinone was menaquinone-7. The polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major cellular fatty acids were anteiso-C(15 : 0), anteiso-C(17 : 0), iso-C(16 : 0) and C(16 : 0). The DNA G+C content of strain HN30(T) was 47 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HN30(T) was most closely related to Geomicrobium halophilum BH1(T) (93 % sequence similarity). 16S rRNA gene sequence similarities with other recognized species were less than 89 %. Phylogenetic and phenotypic characteristics indicated that strain HN30(T) represents a novel species in a new genus, for which the name Natribacillus halophilus gen. nov., sp. nov. is proposed; the type strain is HN30(T) ( = JCM 15649(T) = DSM 21771(T)).


Macromolecular Bioscience | 2014

Structurally Distinct Hybrid Polymer/Lipid Nanoconstructs Harboring a Type-I Ribotoxin as Cellular Imaging and Glioblastoma-Directed Therapeutic Vectors

M. Sheikh Mohamed; Srivani Veeranarayanan; Ankur Baliyan; Aby Cheruvathoor Poulose; Yutaka Nagaoka; Hiroaki Minegishi; Seiki Iwai; Yasuhiro Shimane; Yasuhiko Yoshida; Toru Maekawa; D. Sakthi Kumar

A nanoformulation composed of a ribosome inactivating protein-curcin and a hybrid solid lipid nanovector has been devised against glioblastoma. The structurally distinct nanoparticles were highly compatible to human endothelial and neuronal cells. A sturdy drug release from the particles, recorded upto 72 h, was reflected in the time-dependent toxicity. Folate-targeted nanoparticles were specifically internalized by glioma, imparting superior toxicity and curbed an aggressively proliferating in vitro 3D cancer mass in addition to suppressing the anti-apoptotic survivin and cell matrix protein vinculin. Combined with the imaging potential of the encapsulated dye, the nanovector emanates as a multifunctional anti-cancer system.


International Journal of Systematic and Evolutionary Microbiology | 2013

Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt

Yuto Yamauchi; Hiroaki Minegishi; Akinobu Echigo; Yasuhiro Shimane; Hirokazu Shimoshige; Masahiro Kamekura; Takashi Itoh; Noriyuki Doukyu; Akira Inoue; Ron Usami

Three halophilic archaeal strains, MH1-34-1(T), MH1-16-1 and MH1-224-5 were isolated from commercial salt samples produced from seawater in Indonesia, the Philippines and Japan, respectively. Cells of the three strains were pleomorphic and stained Gram-negative. Strain MH1-34-1(T) was orange-red pigmented, while MH1-16-1 and MH1-224-5 were pink-pigmented. Strain MH1-34-1(T) was able to grow at 12-30 % (w/v) NaCl (with optimum at 18 % NaCl, w/v) at pH 4.5-7.2 (optimum, pH 5.2-5.5) and at 15-45 °C (optimum, 42 °C). Strains MH1-16-1 and MH1-224-5 grew in slightly different ranges. These strains required at least 1 mM Mg(2+) for growth. The 16S rRNA gene sequences of strains MH1-34-1(T), MH1-16-1 and MH1-224-5 were almost identical (99.8-99.9 % similarities), and the closest relative was Halarchaeum acidiphilum MH-1-52-1(T) with 98.4 % similarities. The DNA G+C contents of MH1-34-1(T), MH1-16-1 and MH1-224-5 were 59.3, 60.8 and 61.0 mol%, respectively. The level of DNA-DNA relatedness amongst the three strains was 90-91 %, while that between each of the three strains and Halarchaeum acidiphilum MH1-52-1(T) was 51-55 %. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates should represent a novel species of the genus Halarchaeum, for which the name Halarchaeum salinum sp. nov. is proposed. The type strain is MH1-34-1(T) ( = JCM 16330(T) = CECT 7574(T)).


International Journal of Systematic and Evolutionary Microbiology | 2011

Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt.

Shuhei Nagaoka; Hiroaki Minegishi; Akinobu Echigo; Yasuhiro Shimane; Masahiro Kamekura; Ron Usami

A Gram-negative, pleomorphic, aerobic, haloalkaliphilic archaeon, strain 167-74(T), was isolated from commercial rock salt imported into Japan from China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 167-74(T) is closely related to Halostagnicola larsenii XH-48(T) (98.3 %) and Halostagnicola kamekurae 194-10(T) (97.2 %). The major polar lipids of the isolate were C(20)C(20) and C(20)C(25) derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. A glycolipid was not detected, in contrast to the two existing, neutrophilic species of the genus Halostagnicola. The DNA G+C content of strain 167-74(T) was 60.7 mol%. and it gave DNA-DNA reassociation values of 19.5 and 18.8 %, respectively, with Hst. larsenii JCM 13463(T) and Hst. kamekurae 194-10(T). Therefore, strain 167-74(T) represents a novel species, for which the name Halostagnicola alkaliphila sp. nov. is proposed, with the type strain 167-74(T) ( = JCM 16592(T)  = CECT 7631(T)).


International Journal of Systematic and Evolutionary Microbiology | 2014

Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov., isolated from a decaying bamboo sunken in the marine environment, and emended description of the genus Thalassospira.

Taishi Tsubouchi; Yukari Ohta; Takuma Haga; Keiko Usui; Yasuhiro Shimane; Kozue Mori; Akiko Tanizaki; Akiko Adachi; Kiwa Kobayashi; Kiyotaka Yukawa; Emiko Takagi; Akihiro Tame; Katsuyuki Uematsu; Tadashi Maruyama; Yuji Hatada

Two marine bacteria, designated strains MBE#61(T) and MBE#74(T), were isolated from a piece of sunken bamboo in the marine environment in Japan. Both of these strains were Gram-stain-negative, but had different cell shapes: MBE#61(T) was spiral, whereas MBE#74(T) was rod-shaped. The temperature, pH and salt concentration ranges for growth of strain MBE#61(T) were 4-38 °C (optimal at 32 °C), pH 4.5-11.0 (optimal at pH 7.0-8.0) and 1-11 % (optimal at 2 %) NaCl, whereas those of strain MBE#74(T) were 4-36 °C (optimal at 30 °C), pH 4.0-10.5 (optimal at pH 7.0-8.0) and 1-12 % (optimal at 4 %) NaCl. Phylogenetic analysis based on partial 16S rRNA gene sequences revealed that both strains belong to the genus Thalassospira within the class Alphaproteobacteria. Similarity between the 16S rRNA gene sequence of strain MBE#61(T) and those of the type strains of species of the genus Thalassospira was 97.5-99.0 %, and that of strain MBE#74(T) was 96.9-98.6 %; these two isolates were most closely related to Thalassospira lucentensis QMT2(T). However, the DNA-DNA hybridization values between T. lucentensis QMT2(T) and strain MBE#61(T) or MBE#74(T) were only 16.0 % and 7.1 %, respectively. The DNA G+C content of strain MBE#61(T) was 54.4 mol%, and that of strain MBE#74(T) was 55.9 mol%. The predominant isoprenoid quinone of the two strains was Q-10 (MBE#61(T), 97.3 %; MBE#74(T), 93.5 %). The major cellular fatty acids of strain MBE#61(T) were C18 : 1ω7c (31.1 %), summed feature 3 comprising C16 : 0ω7c/iso-C15 : 0 2-OH (26.1 %) and C16 : 0 (20.9 %); those of strain MBE#74(T) were C16 : 0 (26.2 %), C17 : 0 cyclo (19.9 %) and C18 : 1ω7c (12.1 %). On the basis of these results, strain MBE#61(T) and strain MBE#74(T) are considered to represent novel species of the genus Thalassospira, for which names Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov. are proposed. The type strains are MBE#61(T) ( = JCM 18968(T) = CECT 8273(T)) and MBE#74(T) ( = JCM 18969(T) = CECT 8274(T)), respectively. An emended description of the genus Thalassospira is also proposed.

Collaboration


Dive into the Yasuhiro Shimane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Hatada

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadashi Maruyama

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yukari Ohta

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kozue Mori

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Taishi Tsubouchi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge