Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuhiro Shirakawa is active.

Publication


Featured researches published by Yasuhiro Shirakawa.


Laboratory Investigation | 2003

Heparanase expression correlates with invasion and poor prognosis in gastric cancers

Munenori Takaoka; Yoshio Naomoto; Takaomi Ohkawa; Hirokazu Uetsuka; Yasuhiro Shirakawa; Futoshi Uno; Toshiyoshi Fujiwara; Mehmet Gunduz; Hitoshi Nagatsuka; Motowo Nakajima; Noriaki Tanaka; Minoru Haisa

Degradation of basement membrane and extracellular matrix structures are important features of the metastatic process of malignant tumors. Human heparanase degrades heparan sulfate proteoglycans, which represent the main components of basement membranes and the extracellular matrix. Because of the role of heparanase in tumor invasion and metastasis, we examined heparanase expression in primary gastric cancers and in cell lines derived from gastric cancers by immunohistochemistry and RT-PCR, respectively. Four of seven gastric cancer cell lines showed heparanase mRNA expression by RT-PCR. Heparanase protein was detected in both the cytoplasm and the nucleus of heparanase mRNA-positive cells by immunohistochemical staining. Heparanase expression was confirmed in 35 (79.5%) of 44 gastric tumor samples by immunohistochemical staining. However, no or weak heparanase expression was detected in normal gastric mucosa. In situ hybridization showed that the mRNA expression pattern of heparanase was similar to that of the protein, suggesting that increased expression of the heparanase protein at the invasive front was caused by an increase of heparanase mRNA in tumor cells. Analysis of the clinicopathologic features showed stronger heparanase expression in cases of huge growing tumors, extensive invasion to lymph vessels, and regional lymph node metastasis. In gastric cancer, patients with heparanase expression showed significantly poorer prognosis than those without such expression (p = 0.006). In conclusion, our findings suggest that high expression of heparanase in gastric cancer is a strong predictor of poor survival.


Laboratory Investigation | 2004

Localization of heparanase in esophageal cancer cells: Respective roles in prognosis and differentiation

Takaomi Ohkawa; Yoshio Naomoto; Munenori Takaoka; Tetsuji Nobuhisa; Kazuhiro Noma; Takayuki Motoki; Toshihiro Murata; Hirokazu Uetsuka; Masahiko Kobayashi; Yasuhiro Shirakawa; Tomoki Yamatsuji; Nagahide Matsubara; Junji Matsuoka; Minoru Haisa; Mehmet Gunduz; Hidetsugu Tsujigiwa; Hitoshi Nagatsuka; Masao Hosokawa; Motowo Nakajima; Noriaki Tanaka

In this study, we examined the distribution of heparanase protein in 75 esophageal squamous cell carcinomas by immunohistochemistry and analyzed the relationship between heparanase expression and clinicopathological characteristics. In situ hybridization showed that the mRNA expression pattern of heparanase was similar to that of the protein, suggesting that increased expression of the heparanase protein at the invasive front was caused by an increase of heparanase mRNA in tumor cells. Heparanase expression correlated significantly with depth of tumor invasion, lymph node metastasis, tumor node metastasis (TNM) stage and lymphatic invasion. Overexpression of heparanase in esophageal cancers was also associated with poor survival. In addition to its localization in the cytoplasm and cell membrane, heparanase was also identified in the nuclei of normal epithelial and tumor cells by immunohistochemistry. Furthermore, nuclear heparanase was detected in nuclear extract of cancer cell lines by Western blot and immunohistochemistry. Examination of the role of nuclear heparanase in cell proliferation and differentiation by double immunostaining for proliferating cell nuclear antigen (PCNA) and cytokeratin 10 (CK10) showed significant relationship between nuclear heparanase expression and differentiation (heparanase vs CK10), but not for proliferative state of esophageal cancer cells (heparanase vs PCNA). Our results suggest that cytoplasmic heparanase appears to be a useful prognostic marker in patients with esophageal cancer and that nuclear heparanase protein may play a role in differentiation. Inhibition of heparanase activity may be effective in the control of esophageal tumor invasion and metastasis.


Carcinogenesis | 2010

Hypoxia activates the cyclooxygenase-2–prostaglandin E synthase axis

James J. Lee; Mitsuteru Natsuizaka; Shinya Ohashi; Gabrielle S. Wong; Munenori Takaoka; Carmen Z. Michaylira; Daniela Budo; John W. Tobias; Michiyuki Kanai; Yasuhiro Shirakawa; Yoshio Naomoto; Andres J. Klein-Szanto; Volker H. Haase; Hiroshi Nakagawa

Hypoxia-inducible factors (HIFs), in particular HIF-1alpha, have been implicated in tumor biology. However, HIF target genes in the esophageal tumor microenvironment remain elusive. Gene expression profiling was performed upon hypoxia-exposed non-transformed immortalized human esophageal epithelial cells, EPC2-hTERT, and comparing with a gene signature of esophageal squamous cell carcinoma (ESCC). In addition to known HIF-1alpha target genes such as carbonic anhydrase 9, insulin-like growth factor binding protein-3 (IGFBP3) and cyclooxygenase (COX)-2, prostaglandin E synthase (PTGES) was identified as a novel target gene among the commonly upregulated genes in ESCC as well as the cells exposed to hypoxia. The PTGES induction was augmented upon stabilization of HIF-1alpha by hypoxia or cobalt chloride under normoxic conditions and suppressed by dominant-negative HIF-1alpha. Whereas PTGES messenger RNA (mRNA) was negatively regulated by normoxia, PTGES protein remained stable upon reoxygenation. Prostaglandin E(2) (PGE(2)) biosynthesis was documented in transformed human esophageal cells by ectopic expression of PTGES as well as RNA interference directed against PTGES. Moreover, hypoxia stimulated PGE(2) production in a HIF-1alpha-dependent manner. In ESCC, PTGES was overexpressed frequently at the mRNA and protein levels. Finally, COX-2 and PTGES were colocalized in primary tumors along with HIF-1alpha and IGFBP3. Activation of the COX-2-PTGES axis in primary tumors was further corroborated by concomitant upregulation of interleukin-1beta and downregulation of hydroxylprostaglandin dehydrogenase. Thus, PTGES is a novel HIF-1alpha target gene, involved in prostaglandin E biosynthesis in the esophageal tumor hypoxic microenvironment, and this has implications in diverse tumors types, especially of squamous origin.


Gut | 2007

Oesophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa

Tatsuhiro Ishii; Jun Murakami; Kenji Notohara; Harry M. Cullings; Hiromi Sasamoto; Takeshi Kambara; Yasuhiro Shirakawa; Yoshio Naomoto; Mamoru Ouchida; Kenji Shimizu; Noriaki Tanaka; Jeremy R. Jass; Nagahide Matsubara

Background: Oesophageal squamous cell carcinoma (OSCC) often arises from preceding dysplastic lesions in the oesophageal epithelium. However, the molecular changes occurring in premalignant lesions are not well understood. An epigenetic change is an example of OSCC that may occur within the epithelium. Aim: To investigate the methylation status of multiple promoters in cancer-derived DNA, as well as in the background epithelium of OSCC, including dysplastic lesions and non-neoplastic mucosa. The normal epithelium from patients without cancer was also examined. The findings were correlated with the mutational status of p53. Patients and methods: 56 patients with advanced OSCC, 21 patients with intraepithelial neoplasia (IEN), 56 patients with a background of non-neoplastic epithelium, adjacent to the OSCC, and 42 normal control epithelia from healthy volunteers were studied. The promoter methylation status of SFRP1, SFRP2, DCC, APC, p16INK4a, p14ARF, MINT1, MINT2, MINT31, CACNA1G, COX2, DAPK, hMLH1 and MGMT was examined by methylation-specific single polymerase chain reaction or combined bisulphite restriction analysis. The mutation of p53 by direct sequencing was assessed. Results: DNA methylation was observed in OSCC and in its background epithelium. The frequency of CpG island methylation increased from a baseline level in the background non-neoplastic epithelium, through IEN, to advanced OSCC. However, mutations in p53 were almost exclusively observed in IEN and OSCC. More extensive DNA methylation was seen in the neoplastic lesions (OSCC or IEN) having a p53 mutation than in those with wild-type p53. Conclusion: DNA methylation is present at low levels in the non-neoplastic oesophageal epithelium and appears to contribute to the progression of the dysplasia–carcinoma sequence in OSCC carcinogenesis.


Molecular Cancer Therapeutics | 2009

Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor

Kazufumi Sakurama; Kazuhiro Noma; Munenori Takaoka; Yasuko Tomono; Nobuyuki Watanabe; Shinji Hatakeyama; Osamu Ohmori; Seiichi Hirota; Takayuki Motoki; Yasuhiro Shirakawa; Tomoki Yamatsuji; Minoru Haisa; Junji Matsuoka; Noriaki Tanaka; Yoshio Naomoto

Focal adhesion kinase (FAK) is often up-regulated in a variety of malignancies, including gastrointestinal stromal tumor (GIST), and its overexpression seems to be associated with tumor progressiveness and poor prognosis. GIST is well known to have a mutation to c-KIT; thus, a specific c-KIT inhibitor (imatinib) is recognized as the first-line chemotherapy for GIST, although a certain type of c-KIT mutation reveals a resistance to imatinib due to as yet uncertain molecular mechanisms. To assess the c-KIT mutation-related variation of cellular responses to imatinib, murine lymphocyte-derived Ba/F3 cells, which are stably transduced with different types of c-KIT mutation, were treated with either imatinib or a FAK inhibitor (TAE226), and their antitumor effects were determined in vitro and in vivo. A mutation at exon 11 (KITdel559-560) displayed a high sensitivity to imatinib, whereas that at exon 17 (KIT820Tyr) showed a significant resistance to imatinib in vitro and in vivo. KIT820Tyr cells appeared to maintain the activities of FAK and AKT under the imatinib treatment, suggesting that FAK might play a role in cell survival in imatinib-resistant cells. When FAK activity in those cells was inhibited by TAE226, cell growth was equally suppressed and the cells underwent apoptosis regardless of the c-KIT mutation types. Oral administration of TAE226 significantly diminished tumor growth in nude mice bearing KIT820Tyr xenografts. In summary, c-KIT mutation at exon 17 displayed a resistance to imatinib with maintained activations of FAK and subsequent survival signals. Targeting FAK could be a potential therapeutic strategy for imatinib-resistant GISTs. [Mol Cancer Ther 2009;8(1):127–34]


Journal of Cancer Research and Clinical Oncology | 2005

Heparanase expression correlates with malignant potential in human colon cancer

Tetsuji Nobuhisa; Yoshio Naomoto; Takaomi Ohkawa; Munenori Takaoka; Ryoko Ono; Toshihiro Murata; Mehmet Gunduz; Yasuhiro Shirakawa; Tomoki Yamatsuji; Minoru Haisa; Junji Matsuoka; Hidetsugu Tsujigiwa; Hitoshi Nagatsuka; Motowo Nakajima; Noriaki Tanaka

Purpose Heparanase cleaves carbohydrate chains of heparan sulphate proteoglycans and is an important component of the extracellular matrix. This study was designed to determine the relation between heparanase expression and prognosis of patients with colon cancer.Methods The study included 54 patients (35 males and 19 females) who underwent colorectal resection for colorectal cancer between January 1992 and December 1994. Expression of heparanase protein and mRNA were determined and correlated with various clinicopathological parameters. In vitro studies were also performed to examine tumor invasion and to test the effects of heparanase inhibition, and in vivo studies were performed to examine tumor metastasis and prognosis.Results Heparanase expression was detected in the invasion front of the tumor in 37 of 54 (69%) colon cancer samples, whereas 17 of 54 (31%) tumors were negative. Expression of heparanase was significantly more frequent in tumors of higher TNM stage (P=0.0481), higher Dukes stage (P=0.0411), higher vascular infiltration (P=0.0146), and higher lymph vessel infiltration (P=0.0010). Heparanase expression in colon cancers correlated significantly with poor survival (P=0.0361). Heparanase-transfected colon cancer cells exhibited significant invasion compared with control-transfected colon cancer cells (P=0.001), and the peritoneal dissemination model also showed the malignant potential of heparanase-transfected cells, as assayed by number of nodules (P=0.017) and survival (P=0.0062). Inhibition of heparanase significantly reduced the invasive capacity of cancer cells (P=0.003).Conclusions Heparanase is a marker for poor prognosis of patients with colon cancer and could be a suitable target for antitumor therapy in colon cancer.


Cancer Research | 2010

Telomerase-Dependent Oncolytic Adenovirus Sensitizes Human Cancer Cells to Ionizing Radiation via Inhibition of DNA Repair Machinery

Shinji Kuroda; Toshiya Fujiwara; Yasuhiro Shirakawa; Yasumoto Yamasaki; Shuya Yano; Futoshi Uno; Hiroshi Tazawa; Yuuri Hashimoto; Yuichi Watanabe; Kazuhiro Noma; Yasuo Urata; Shunsuke Kagawa; Toshiyoshi Fujiwara

The inability to repair DNA double-strand breaks (DSB) leads to radiosensitization, such that ionizing radiation combined with molecular inhibition of cellular DSB processing may greatly affect treatment of human cancer. As a variety of viral products interact with the DNA repair machinery, oncolytic virotherapy may improve the therapeutic window of conventional radiotherapy. Here, we describe the mechanistic basis for synergy of irradiation and OBP-301 (Telomelysin), an attenuated type-5 adenovirus with oncolytic potency that contains the human telomerase reverse transcriptase promoter to regulate viral replication. OBP-301 infection led to E1B55kDa viral protein expression that degraded the complex formed by Mre11, Rad50, and NBS1, which senses DSBs. Subsequently, the phosphorylation of cellular ataxia-telangiectasia mutated protein was inhibited, disrupting the signaling pathway controlling DNA repair. Thus, tumor cells infected with OBP-301 could be rendered sensitive to ionizing radiation. Moreover, by using noninvasive whole-body imaging, we showed that intratumoral injection of OBP-301 followed by regional irradiation induces a substantial antitumor effect, resulting from tumor cell-specific radiosensitization, in an orthotopic human esophageal cancer xenograft model. These results illustrate the potential of combining oncolytic virotherapy and ionizing radiation as a promising strategy in the management of human cancer.


Clinical Cancer Research | 2005

Heparanase Is Involved in Angiogenesis in Esophageal Cancer through Induction of Cyclooxygenase-2

Takaomi Okawa; Yoshio Naomoto; Tetsuji Nobuhisa; Munenori Takaoka; Takayuki Motoki; Yasuhiro Shirakawa; Tomoki Yamatsuji; Hiroyasu Inoue; Mamoru Ouchida; Mehmet Gunduz; Motowo Nakajima; Noriaki Tanaka

Purpose: Both heparanase and cyclooxygenase-2 (COX-2) are thought to play critical roles for tumor malignancy, including angiogenesis, although it is unknown about their relationship with each other in cancer progression. We hypothesized that they may link to each other on tumor angiogenesis. Experimental Design: The expressions of heparanase and COX-2 in 77 primary human esophageal cancer tissues were assessed by immunohistochemistry to do statistical analysis for the correlation between their clinicopathologic features, microvessel density, and survival of those clinical cases. Human esophageal cancer cells were transduced with heparanase cDNA and used for reverse transcription-PCR and Western blot to determine the expression of heparanase and COX-2. COX-2 promoter vector and its deletion/mutation constructs were also used along with transduction of heparanase cDNA for luciferase assay. Results: Heparanase and COX-2 protein expression exhibited a similar pattern in esophageal tumor tissues, and their expression correlated with tumor malignancy and poor survival. Their expression also revealed a significant correlation with high intratumoral microvessel density. Up-regulation of COX-2 mRNA and protein was observed in esophageal cancer cells transfected with heparanase cDNA. COX-2 promoter was activated after heparanase cDNA was transduced and the deletion/mutation of three transcription factor (cyclic AMP response element, nuclear factor-κB, and nuclear factor-interleukin-6) binding elements in COX-2 promoter strongly suppressed its activity. Conclusion: Our results suggest that heparanase may play a novel role for COX-2-mediated tumor angiogenesis.


Clinical Cancer Research | 2008

Dual-Tyrosine Kinase Inhibitor for Focal Adhesion Kinase and Insulin-like Growth Factor-I Receptor Exhibits Anticancer Effect in Esophageal Adenocarcinoma In vitro and In vivo

Nobuyuki Watanabe; Munenori Takaoka; Kazufumi Sakurama; Yasuko Tomono; Shinji Hatakeyama; Osamu Ohmori; Takayuki Motoki; Yasuhiro Shirakawa; Tomoki Yamatsuji; Minoru Haisa; Junji Matsuoka; David G. Beer; Hitoshi Nagatsuka; Noriaki Tanaka; Yoshio Naomoto

Purpose: Focal adhesion kinase (FAK) regulates integrin and growth factor–mediated signaling pathways to enhance cell migration, proliferation, and survival, and its up-regulation correlates malignant grade and poor outcome in several types of cancer. In this study, we aimed to raise a potential therapeutic strategy using a FAK inhibitor for Barretts esophageal adenocarcinoma. Experimental Design: The expression status of FAK in clinical Barretts esophageal adenocarcinoma tissues was determined by immunohistochemistry. Cultured esophageal adenocarcinoma cells were treated with TAE226, a specific FAK inhibitor with an additional effect of inhibiting insulin-like growth factor-I receptor (IGF-IR), to assess its anticancer effect in vitro. Western blot was carried out to explore a participating signaling pathway for TAE226-induced cell death. Furthermore, TAE226 was orally administered to s.c. xenograft animals to investigate its anticancer effect in vivo. Results: Strong expression of FAK was found in 94.0% of Barretts esophageal adenocarcinoma compared with 17.9% of Barretts epithelia, suggesting that FAK might play a critical role in the progression of Barretts esophageal adenocarcinoma. When esophageal adenocarcinoma cells were treated with TAE226, cell proliferation and migration were greatly inhibited with an apparent structural change of actin fiber and a loss of cell adhesion. The activities of FAK, IGF-IR, and AKT were suppressed by TAE226 and subsequent dephosphorylation of BAD at Ser136 occurred, resulting in caspase-mediated apoptosis. In vivo tumor volume was significantly reduced by oral administration of TAE226. Conclusions: These results suggest that TAE226, a dual tyrosine kinase inhibitor for FAK and IGF-IR, could become a new remedy for Barretts esophageal adenocarcinoma.


Langenbeck's Archives of Surgery | 2004

Free jejunal graft for hypopharyngeal and esophageal reconstruction

Yasuhiro Shirakawa; Yoshio Naomoto; Kazuhiro Noma; Ryoko Ono; Tetsuji Nobuhisa; Masahiko Kobayashi; Toshiya Fujiwara; Hirofumi Noguchi; Takaomi Ohkawa; Tomoki Yamatsuji; Minoru Haisa; Junji Matsuoka; Mehmet Gunduz; Noriaki Tanaka

AimsThis study assessed the techniques of the free jejunal graft for the reconstruction of hypopharynx or cervical esophagus and discussed the main aspects related to those procedures.Methods and resultsBy using free jejunal grafts, we reconstructed 54 hypopharyngeal and cervical esophageal cancers. In this study, 23 out of 54 patients had a malignant tumor located in the hypopharynx and 31 in the cervical esophagus (27 primary cases and four secondary cases). Despite the multi-step and time-consuming procedure, we did not incur any trans-operative complication. Furthermore, we undertook the larynx preserving cervical esophagectomy and free jejunal graft reconstruction in six patients with cervical esophageal cancer, and those patients acquired a good quality of life.ConclusionFor the reconstruction of hypopharynx or cervical esophagus, the free jejunal graft is a very useful technique and improves the patient’s quality of life.

Collaboration


Dive into the Yasuhiro Shirakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge