Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuhisa Nogi is active.

Publication


Featured researches published by Yasuhisa Nogi.


Molecular Genetics and Genomics | 1984

Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae - II. The isolation and dosage effect of the regulatory gene GAL80

Yasuhisa Nogi; Hideo Shimada; Yuriko Matsuzaki; Hideaki Hashimoto; Toshio Fukasawa

SummaryThe galactose analogue 2-deoxygalactose was found to inhibit the growth of a mutant strain of Saccharomyces cerevisiae constitutively producing the set of galactose utilization enzymes. Based on this fact, the yeast GAL80 gene negatively regulating the expression of the genes encoding those enzymes was isolated for its ability to confer 2-deoxygalactose resistance on a strain carrying a recessive mutation in that gene. The GAL80 gene was located within a 3.0 kb fragment in the cloned DNA. When the isolated gene was incorporated into a multi-copy plasmid, the induced level of three enzymes encoded by the gene cluster GAL7-GAL10-GAL1 in the host chromosome was lowered. Such a gene dosage effect of GAL80 was further pronounced if sucrose, a sugar causing catabolite repression, was added to the growth medium. The ratio of the enzyme activity of the yeast bearing multiple copies of GAL80 to that of the yeast bearing its single copy significantly varied with the enzyme. From these results we suggest that the intracellular inducer interacts with the GAL80 product and that GAL80 molecules directly bind the GAL cluster genes with an affinity different from one gene to another.


Molecular and Cellular Biology | 2008

Two RNA Polymerase I Subunits Control the Binding and Release of Rrn3 during Transcription

Frédéric Beckouët; Sylvie Labarre-Mariotte; Benjamin Albert; Yukiko Imazawa; Michel Werner; Olivier Gadal; Yasuhisa Nogi; Pierre Thuriaux

ABSTRACT Rpa34 and Rpa49 are nonessential subunits of RNA polymerase I, conserved in species from Saccharomyces cerevisiae and Schizosaccharomyces pombe to humans. Rpa34 bound an N-terminal region of Rpa49 in a two-hybrid assay and was lost from RNA polymerase in an rpa49 mutant lacking this Rpa34-binding domain, whereas rpa34Δ weakened the binding of Rpa49 to RNA polymerase. rpa34Δ mutants were caffeine sensitive, and the rpa34Δ mutation was lethal in a top1Δ mutant and in rpa14Δ, rpa135(L656P), and rpa135(D395N) RNA polymerase mutants. These defects were shared by rpa49Δ mutants, were suppressed by the overexpression of Rpa49, and thus, were presumably mediated by Rpa49 itself. rpa49 mutants lacking the Rpa34-binding domain behaved essentially like rpa34Δ mutants, but strains carrying rpa49Δ and rpa49-338::HIS3 (encoding a form of Rpa49 lacking the conserved C terminus) had reduced polymerase occupancy at 30°C, failed to grow at 25°C, and were sensitive to 6-azauracil and mycophenolate. Mycophenolate almost fully dissociated the mutant polymerase from its ribosomal DNA (rDNA) template. The rpa49Δ and rpa49-338::HIS3 mutations had a dual effect on the transcription initiation factor Rrn3 (TIF-IA). They partially impaired its recruitment to the rDNA promoter, an effect that was bypassed by an N-terminal deletion of the Rpa43 subunit encoded by rpa43-35,326, and they strongly reduced the release of the Rrn3 initiation factor during elongation. These data suggest a dual role of the Rpa49-Rpa34 dimer during the recruitment of Rrn3 and its subsequent dissociation from the elongating polymerase.


Molecular and Cellular Biology | 2004

Transcriptional Coactivator PC4 Stimulates Promoter Escape and Facilitates Transcriptional Synergy by GAL4-VP16

Aya Fukuda; Tomoyoshi Nakadai; Miho Shimada; Tohru Tsukui; Masahito Matsumoto; Yasuhisa Nogi; Michael Meisterernst; Koji Hisatake

ABSTRACT Positive cofactor 4 (PC4) is a coactivator that strongly augments transcription by various activators, presumably by facilitating the assembly of the preinitiation complex (PIC). However, our previous observation of stimulation of promoter escape in GAL4-VP16-dependent transcription in the presence of PC4 suggested a possible role for PC4 in this step. Here, we performed quantitative analyses of the stimulatory effects of PC4 on initiation, promoter escape, and elongation in GAL4-VP16-dependent transcription and found that PC4 possesses the ability to stimulate promoter escape in response to GAL4-VP16 in addition to its previously demonstrated effect on PIC assembly. This stimulatory effect of PC4 on promoter escape required TFIIA and the TATA box binding protein-associated factor subunits of TFIID. Furthermore, PC4 displayed physical interactions with both TFIIH and GAL4-VP16 through its coactivator domain, and these interactions were regulated distinctly by PC4 phosphorylation. Finally, GAL4-VP16 and PC4 stimulated both initiation and promoter escape to similar extents on the promoters with three and five GAL4 sites; however, they stimulated promoter escape preferentially on the promoter with a single GAL4 site. These results provide insight into the mechanism by which PC4 permits multiply bound GAL4-VP16 to attain synergy to achieve robust transcriptional activation.


Molecular and Cellular Biology | 2000

The Rpb6 Subunit of Fission Yeast RNA Polymerase II Is a Contact Target of the Transcription Elongation Factor TFIIS

Akira Ishiguro; Yasuhisa Nogi; Koji Hisatake; Masami Muramatsu; Akira Ishihama

ABSTRACT The Rpb6 subunit of RNA polymerase II is one of the five subunits common to three forms of eukaryotic RNA polymerase. Deletion and truncation analyses of the rpb6 gene in the fission yeastSchizosaccharomyces pombe indicated that Rpb6, consisting of 142 amino acid residues, is an essential protein for cell viability, and the essential region is located in the C-terminal half between residues 61 and 139. After random mutagenesis, a total of 14 temperature-sensitive mutants were isolated, each carrying a single (or double in three cases and triple in one) mutation. Four mutants each carrying a single mutation in the essential region were sensitive to 6-azauracil (6AU), which inhibits transcription elongation by depleting the intracellular pool of GTP and UTP. Both 6AU sensitivity and temperature-sensitive phenotypes of these rpb6 mutants were suppressed by overexpression of TFIIS, a transcription elongation factor. In agreement with the genetic studies, the mutant RNA polymerases containing the mutant Rpb6 subunits showed reduced affinity for TFIIS, as measured by a pull-down assay of TFIIS-RNA polymerase II complexes using a fusion form of TFIIS with glutathioneS-transferase. Moreover, the direct interaction between TFIIS and RNA polymerase II was competed by the addition of Rpb6. Taken together, the results lead us to propose that Rpb6 plays a role in the interaction between RNA polymerase II and the transcription elongation factor TFIIS.


Molecular and Cellular Biology | 2004

Multiple Protein-Protein Interactions by RNA Polymerase I-Associated Factor PAF49 and Role of PAF49 in rRNA Transcription

Kazuo Yamamoto; Mika Yamamoto; Ken-ichi Hanada; Yasuhisa Nogi; Toshifumi Matsuyama; Masami Muramatsu

ABSTRACT We previously demonstrated the critical role of RNA polymerase I (Pol I)-associated factor PAF53 in mammalian rRNA transcription. Here, we report the isolation and characterization of another Pol I-associated factor, PAF49. Mouse PAF49 shows striking homology to the human nucleolar protein ASE-1, so that they are considered orthologues. PAF49 and PAF53 were copurified with a subpopulation of Pol I during purification from cell extracts. Physical association of PAF49 with Pol I was confirmed by a coimmunoprecipitation assay. PAF49 was shown to interact with PAF53 through its N-terminal segment. This region of PAF49 also served as the target for TAFI48, the 48-kDa subunit of selectivity factor SL1. Concomitant with this interaction, the other components of SL1 also coimmunoprecipitated with PAF49. Specific transcription from the mouse rRNA promoter in vitro was severely impaired by anti-PAF49 antibody, which was overcome by addition of recombinant PAF49 protein. Moreover, overexpression of a deletion mutant of PAF49 significantly reduced pre-rRNA synthesis in vivo. Immunolocalization analysis revealed that PAF49 accumulated in the nucleolus of growing cells but dispersed to nucleoplasm in growth-arrested cells. These results strongly suggest that PAF49/ASE-1 plays an important role in rRNA transcription.


Antiviral Research | 2011

The route of immunization with adenoviral vaccine influences the recruitment of cytotoxic T lymphocytes in the lung that provide potent protection from influenza A virus

Tatsuya Suda; Masaaki Kawano; Yasuhisa Nogi; Naohito Ohno; Toshitaka Akatsuka; Masanori Matsui

Virus-specific cytotoxic T lymphocytes (CTLs) in the lung are considered to confer protection from respiratory viruses. Several groups demonstrated that the route of priming was likely to have an implication for the trafficking of antigen-specific CTLs. Therefore, we investigated whether the route of immunization with adenoviral vaccine influenced the recruitment of virus-specific CTLs in the lung that should provide potent protection from influenza A virus. Mice were immunized with recombinant adenovirus expressing the matrix (M1) protein of influenza A virus via various immunization routes involving intraperitoneal, intranasal, intramuscular, or intravenous administration as well as subcutaneous administration in the hind hock. We found that the immunization route dramatically impacted the recruitment of M1-specific IFN-γ(+) CD8(+) T cells both in the lung and the spleen. Surprisingly, hock immunization was most effective for the accumulation in the lung of IFN-γ-producing CD8(+) T cells that possessed M1-specific cytolytic activity. Further, antigen-driven IFN-γ(+) CD8(+) T cells in the lung, but not in the spleen, were likely to be correlated with the resistance to challenge with influenza A virus. These results may improve our ability to design vaccines that target virus-specific CTL responses to respiratory viruses such as influenza A virus.


Journal of Biological Chemistry | 1996

Mouse RNA Polymerase I 16-kDa Subunit Able to Associate with 40-kDa Subunit Is a Homolog of Yeast AC19 Subunit of RNA Polymerases I and III

Yeqi Yao; Kazuo Yamamoto; Yuichi Nishi; Yasuhisa Nogi; Masami Muramatsu

We have previously isolated a mouse RPA40 (mRPA40) cDNA encoding the 40-kDa subunit of mouse RNA polymerase I and demonstrated that mRPA40 is a mouse homolog of the yeast subunit AC40, which is a subunit of RNA polymerases I and III, having a limited homology to bacterial RNA polymerase subunit α (Song, C. Z., Hanada, K., Yano, K., Maeda, Y., Yamamoto, K., and Muramatsu, M. (1994) J. Biol. Chem. 269, 26976-26981). In an extension of the study we have now cloned mouse RPA16 (mRPA16) cDNA encoding the 16-kDa subunit of mouse RNA polymerase I by a yeast two-hybrid system using mRPA40 as a bait. The deduced amino acid sequence shows 45% identity to the yeast subunit AC19 of RNA polymerases I and III, known to associate with AC40, and a local similarity to bacterial α subunit. We have shown that mRPA40 mutants failed to interact with mRPA16 and that neither mRPA16 nor mRPA40 can interact by itself in the yeast two-hybrid system. These results suggest that higher eukaryotic RNA polymerase I conserves two distinct α-related subunits that function to associate with each other in an early stage of RNA polymerase I assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The regulatory role for the ERCC3 helicase of general transcription factor TFIIH during promoter escape in transcriptional activation

Aya Fukuda; Yasuhisa Nogi; Koji Hisatake

Eukaryotic transcriptional activators have been proposed to function, for the most part, by promoting the assembly of preinitiation complex through the recruitment of the RNA polymerase II transcriptional machinery to the promoter. Previous studies have shown that transcriptional activation is critically dependent on transcription factor IIH (TFIIH), which functions during promoter opening and promoter escape, the steps following preinitiation complex assembly. Here we have analyzed the role of TFIIH in transcriptional activation and show that the excision repair cross-complementing (ERCC) 3 helicase activity of TFIIH plays a regulatory role to stimulate promoter escape in activated transcription. The stimulatory effect of the ERCC3 helicase is observed until ≈10-nt RNA is synthesized, and the helicase seems to act throughout the entire course of promoter escape. Analyses of the early phase of transcription show that a majority of the initiated complexes abort transcription and fail to escape the promoter; however, the proportion of productive complexes that escape the promoter apparently increases in response to activation. Our results establish that promoter escape is an important regulatory step stimulated by the ERCC3 helicase activity in response to activation and reveal a possible mechanism of transcriptional synergy.


FEBS Letters | 2011

Rpa43 and its partners in the yeast RNA polymerase I transcription complex

Frédéric Beckouët; Sylvie Mariotte-Labarre; Gérald Peyroche; Yasuhisa Nogi; Pierre Thuriaux

HMO1 and SPT5 colocalize by fluorescence microscopy (View interaction)


Molecular Genetics and Genomics | 1999

The fission yeast rpa17+ gene encodes a functional homolog of AC19, a subunit of RNA polymerases I and III of Saccharomyces cerevisiae

K. Imai; Yukiko Imazawa; Yao Y; Kazuo Yamamoto; Koji Hisatake; Masami Muramatsu; Yasuhisa Nogi

Abstract Eukaryotic RNA polymerases I and III consist of multiple subunits. Each of these enzymes includes two distinct and evolutionarily conserved subunits called α-related subunits which are shared only by polymerases I and III. The α-related subunits show limited homology with the α-subunit of prokaryotic RNA polymerase. To gain further insight into the structure and function of α-related subunits, we cloned and characterized a gene from Schizosaccharomyces pombe that encodes a protein of 17 kDa which can functionally replace AC19 – an α-related subunit of RNA polymerases I and III of Saccharomyces cerevisiae– and was thus named rpa17+. RPA17 has 125 amino acids and shows 63% identity to AC19 over a 108-residue stretch, whereas the N-terminal regions of the two proteins are highly divergent. Disruption of rpa17+ shows that the gene is essential for cell growth. Sequence comparison with other α-related subunits from different species showed that RPA17 contains an 81-amino acid block that is evolutionarily conserved. Deletion analysis of the N- and C-terminal regions of RPA17 and AC19 confirms that the 81-amino acid block is important for the function of the α-related subunits.

Collaboration


Dive into the Yasuhisa Nogi's collaboration.

Top Co-Authors

Avatar

Masami Muramatsu

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukiko Imazawa

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Imai

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar

Mika Yamamoto

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge