Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuko Ashida is active.

Publication


Featured researches published by Yasuko Ashida.


Prostaglandins | 1983

Pharmacological profile of AA-861, A 5-lipoxygenase inhibitor

Yasuko Ashida; Taketoshi Saijo; Hisashi Kuriki; H. Makino; S. Terao; Yoshitaka Maki

AA-861, a selective 5-lipoxygenase inhibitor, suppressed A23187-induced formations of 5-HETE and LTB4 in rat peritoneal macrophages. Immunologically-stimulated generation of SRS-A was also inhibited in guinea pig lung and rat peritoneal cavity. AA-861 had no effects on histamine release from rat mast cells or passive cutaneous anaphylaxis in rats. Essentially no antagonistic activity to LTD4 or histamine was observed. This compound exerted an obvious inhibition of allergic bronchoconstriction in guinea pigs and a moderate reduction of carrageenin-induced paw edema and pleurisy in rats. These findings suggest that SRS-A plays an important role in asthmatic and inflammatory reactions.


International Archives of Allergy and Immunology | 1987

Mechanism of action of an antiallergic agent, amlexanox (AA-673), in inhibiting histamine release from mast cells: acceleration of cAMP generation and inhibition of phosphodiesterase

H. Makino; Taketoshi Saijo; Yasuko Ashida; Hisashi Kuriki; Yoshitaka Maki

Amlexanox markedly inhibits histamine release from rat mast cells. To clarify the mechanism of this inhibition, we investigated the effect of amlexanox on cAMP content, which, when increased, inhibits histamine release in rat peritoneal mast cells. At concentrations of 10(-8)-10(-6)M, amlexanox or isoproterenol increased the cAMP content of mast cells over that of control cells about 2-fold. When the mast cells were incubated with 10(-8), 10(-7) and 10(-6) M of amlexanox combined with 10(-7) M isoproterenol, the cAMP contents were synergistically increased 15-, 60- and 88-fold, respectively. 3-Isobutyl-1-methylxanthine (IBMX) at 10(-6)-10(-4) M increased the cAMP content 1.7-3.8-fold, and a combination of 10(-4) M IBMX and 10(-7) M isoproterenol synergistically increased the cAMP content 41-fold. A combination of amlexanox and IBMX synergistically increased the cAMP content 19-fold. The increase in cAMP content, when amlexanox and isoproterenol were combined, was transient; it peaked at 0.5 min after the drugs were administered, then decreased to 20-30% of the peak value about 2 min later. Pretreatment of mast cells with amlexanox reduced the effect of the combination of amlexanox and isoproterenol, indicating tachyphylaxis; pretreatment with IBMX had no such effect. The cAMP content of macrophages was also increased by amlexanox, but when combined with isoproterenol or PGE2, the effect was additive. Amlexanox inhibited cAMP phosphodiesterase in rat mast cells; its IC50 value was 1.4 X 10(-5) M, and its inhibitory activity was half that of IBMX.(ABSTRACT TRUNCATED AT 250 WORDS)


Prostaglandins | 1989

A novel anti-asthmatic quinone derivative, AA-2414 with a potent antagonistic activity against a variety of spasmogenic prostanoids

Yasuko Ashida; Tatsumi Matsumoto; Hisashi Kuriki; Mitsuru Shiraishi; Kaneyoshi Kato; Shinji Terao

The anti-asthmatic activity of AA-2414 [(+/-)-7-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)-7-phenylheptano ic acid] has been studied in vivo and in vitro. Experimental allergic asthma was inhibited by orally administered AA-2414 in a dose-dependent manner. AA-2414, 0.08-1.25 mg/kg (p.o.), inhibited the bronchconstriction in guinea pigs induced by a prostaglandin endoperoxide analogue (U-46619), leukotriene D4 (LTD4), and platelet activating factor (PAF) with a long duration of action. The compound did not inhibit histamine-induced bronchoconstriction. AA-2414 reduced the induction of pulmonary inflation caused by LTD4 aerosol inhalation. AA-2414 competitively inhibited the contractile response to U-46619 in guinea pig tracheal and parenchymal strips and dog saphenous vein strips with pA2 values of 7.69, 8.29 and 6.79, respectively. Furthermore, the contractile responses of guinea pig tracheal strip to PGD2, 9 alpha, 11 beta-PGF2 and PGF2 alpha were inhibited with pA2 values of 7.20, 7.79 and 5.71, respectively. These results suggest that AA-2414, a quinone derivative, is a novel, potent and orally active antagonist of a variety of spasmogenic prostanoids.


Inflammation Research | 2001

Involvement of thromboxane A2 and peptide leukotrienes in early and late phase nasal blockage in a guinea pig model of allergic rhinitis.

M. Yamasaki; Nobuaki Mizutani; Sasaki K; Takeshi Nabe; Tatsumi Matsumoto; Yasuko Ashida; Shigekatsu Kohno

Abstract. Objective and design: We investigated the effects of the thromboxane (TX) A2 antagonist seratrodast, the peptide leukotriene (p-LT) antagonist pranlukast, the antihistaminic drug terfenadine and the glucocorticoid dexamethasone on antigen-induced sneezing, biphasic nasal blockage and nasal hyperresponsiveness to histamine using a guinea pig model of allergic rhinitis.¶Subjects: Male Hartley guinea pigs were used.¶Treatment: Intranasally sensitized guinea pigs were challenged once every week for 13 weeks by inhalation of Japanese cedar pollen as the antigen. Dexamethasone and other agents were administered orally 3 and 1 h, respectively, before the 4th, 6th and 13th challenge.¶Methods: Sneezing frequency and the change in specific airway resistance (sRaw) were measured at these challenges. Two days after the 13th challenge, nasal responsiveness to histamine was evaluated by measuring sRaw after intranasal instillation of increasing doses of histamine. Moreover, the levels of TXB2, p-LTs and histamine were estimated in nasal cavity lavage fluid (NCLF) collected at the 13th challenge.¶Results: Only terfenadine (10 mg/kg) significantly inhibited sneezing at any challenge time. Seratrodast (3 and 10 mg/ kg), pranlukast (30 mg/kg) and dexamethasone (10 mg/kg), but not terfenadine, suppressed both the early and late phase elevation of sRaw (biphasic nasal blockage), although the degree of inhibition on the early phase response varied with the challenge time. In contrast, the development of nasal hyperresponsiveness to histamine was inhibited by only dexamethasone. Furthermore, biphasic increases in TXB2, p-LTs and histamine in NCLF were observed after the challenge in sensitized animals.¶Conclusions: These results suggest that TXA2 and p-LTs, but not histamine, play important roles in both the early and the late phase nasal blockage in this model of allergic rhinitis.


International Archives of Allergy and Immunology | 1985

Mechanism of the Action of Amoxanox (AA-673), an Orally Active Antiallergic Agent

Taketoshi Saijo; Hisashi Kuriki; Yasuko Ashida; H. Makino; Yoshitaka Maki

Amoxanox inhibited immunologically stimulated and LTD4-induced bronchoconstriction in laboratory animals. Amoxanox, like DSCG, inhibited rat IgE-mediated PCA and histamine release from rat peritoneal mast cells, and suppressed immunologically stimulated or calcium ionophore A23187-induced SRS-A generation in rat peritoneal cavity and guinea pig lung fragments. This compound also reduced the contractile response of guinea pig lung parenchymal and ileal strips to LTD4, but did not significantly affect the response of the ileum to either histamine or acetylcholine. Therefore, the antiallergic action of amoxanox seems to be associated with inhibition of chemical mediator release and antagonistic activity on SRS-A.


Inflammation Research | 2001

Pharmacological characterization of the leukocyte kinetics after intranasal antigen challenge in a guinea pig model of allergic rhinitis.

M. Yamasaki; Sasaki K; Nobuaki Mizutani; Takeshi Nabe; Sakura Y; Tatsumi Matsumoto; Yasuko Ashida; Shigekatsu Kohno

Abstract. Objective and design: We characterized the leukocyte kinetics after antigen challenge, and investigated the effects of the thromboxane (TX) A2 antagonist seratrodast, the peptide leukotriene (p-LT) antagonist pranlukast, the antihistaminic drug terfenadine and the glucocorticoid dexamethasone on this leukocyte response in a guinea pig model of allergic rhinitis.¶Subjects: Male Hartley guinea pigs were used.¶Treatment: Intranasally sensitized guinea pigs were challenged once every week for 15 weeks by inhalation of Japanese cedar pollen as the antigen. Dexamethasone and other agents were administered orally 3 and 1 h, respectively, before the 15th challenge.¶Methods: The time-related changes in the numbers of differential leukocytes in nasal cavity lavage fluid (NCLF) and in peripheral blood after pollen inhalation challenge were investigated. The effects of the drugs on the antigen-induced changes in the leukocyte counts were evaluated. In addition, histopathological examination of the nasal mucosa was also performed 5 h after the challenge.¶Results: There was a marked increase in the number of leukocytes in NCLF, especially of eosinophils, which peaked at 5 h, after antigen challenge in this model. This response was also accompanied by the peripheral blood eosinophilia and neutrophilia. Seratrodast (30 mg/kg), pranlukast (30 mg/kg) and dexamethasone (10 mg/kg) inhibited the eosinophilia in all of the blood, the nasal mucosa and NCLF seen 5 h after the antigen challenge. Terfenadine (10 mg/kg) had no apparent effect on the blood and the mucosal eosinophilia, although it tended to suppress the eosinophil accumulation in NCLF.¶Conclusions: These results suggest that the present model is useful for analyzing the mechanisms of antigen-induced eosinophilic inflammation in allergic rhinitis and that both TXA2 and p-LTs, but not histamine, contribute to the antigen-induced eosinophilia in this model of allergic rhinitis.


International Archives of Allergy and Immunology | 1986

Role of Leukotrienes in Rat Reversed Passive Arthus Pleurisy and the Effect of AA-861, a 5-Lipoxygenase Inhibitor

H. Makino; Yasuko Ashida; Taketoshi Saijo; Hisashi Kuriki; S. Terao; Yoshitaka Maki

In studies of the role of leukotrienes in inflammatory reactions, the induction of rat reversed passive Arthus pleurisy (a type III allergic reaction) was employed. Increases of exudate volume, vascular permeability, and migration of inflammatory cells in the pleural cavity were observed. The vascular permeability was enhanced biphasically during 0-30 min (early response) and during 3-6 h (late response) after induction of the pleurisy. The infiltration of inflammatory cells, mainly polymorphonuclear leukocytes, into the cavity increased and reached a maximum 6 h after the pleurisy was induced. Leukotriene B4 (LTB4), 5-monohydroxyeicosatetraenoic acid (5-HETE), and slow-reacting substance of anaphylaxis (SRS-A), consisting of LTC4, LTD4 and LTE4, were detected in the exudate by reversed-phase high-performance liquid chromatography during the early response. The contents of LTC4 reached a maximum 10 min after the challenge, followed by a rapid decrease within 1 h. The rise and decay of LTC4 correlated with the increase in vascular permeability during the early phase. AA-861, a 5-lipoxygenase inhibitor, given intrapleurally inhibited the increase in vascular permeability, cell migration, and generation of leukotrienes during the early phase of the pleurisy. These results indicate that products of the 5-lipoxygenase pathway, such as LTC4 and LTB4, may play an important role as chemical mediators in the inflammatory reaction.


International Archives of Allergy and Immunology | 1985

Inhibition by amoxanox (AA-673) of the immunologically, leukotriene D4- or platelet-activating factor-stimulated bronchoconstriction in guinea pigs and rats.

Taketoshi Saijo; Hisashi Kuriki; Yasuko Ashida; H. Makino; Yoshitaka Maki

We studied the effects of amoxanox (AA-673) on allergic asthma and spasmogen-induced bronchoconstriction in guinea pigs and rats. Amoxanox given orally or parenterally inhibited allergic asthma mediated by IgE, IgG1, or heterologous IgG in guinea pigs and by IgE in rats. This compound also reduced leukotriene D4- and platelet-activating factor-induced bronchoconstriction in guinea pigs, strongly suggesting an antagonistic activity against slow reacting substance of anaphylaxis (SRS-A). Histamine- or acetylcholine-induced bronchoconstriction was not significantly affected by amoxanox. These antiasthmatic effects of amoxanox seem to be associated with an inhibition of the release of chemical mediators such as histamine and SRS-A and with an antagonism against SRS-A.


International Archives of Allergy and Immunology | 1986

The Antiallergic Agent Amoxanox Suppresses SRS-A Generation by Inhibiting Lipoxygenase

Taketoshi Saijo; H. Makino; S. Tamura; Hisashi Kuriki; Yasuko Ashida; S. Terao; Yoshitaka Maki

Amoxanox has potent antiallergic activity because it inhibits the release of chemical mediators such as histamine and leukotrienes. We studied the in vitro effect of amoxanox on arachidonic acid metabolism, including the lipoxygenase and cyclooxygenase pathways. Amoxanox inhibited calcium ionophore A23187-induced formation of 5-HETE, LTB4, SRS-A (LTC4, LTD4 and LTE4), and 12-HETE in rat peritoneal resident monocytes. These results indicate that amoxanox inhibits 5- and 12-lipoxygenases. The compound, however, did not affect the formation of TXB2 or 6-keto-PGF1 alpha in guinea pig lung fragments and PGE2 or PGF2 alpha in bovine seminal vesicles, suggesting that it did not inhibit cyclooxygenase. These results show that the antiallergic action of amoxanox is associated, at least in part, with the reduction of leukotrienes due to the inhibition of lipoxygenases.


European Journal of Pharmacology | 2003

Effects of TAK-427 on acute nasal symptoms and nasal obstruction in guinea pig model of experimental allergic rhinitis

Shigeru Fukuda; Katsuo Midoro; Michiyo Gyoten; Yasuhiko Kawano; Yasuko Ashida; Takeshi Nabe; Shigekatsu Kohno; Hideaki Nagaya

TAK-427 (2-[6-[[3-[4-(diphenylmethoxy)piperidino]propyl]amino]imidazo[1,2-b]pyridazin-2-yl]-2-methylpropionic acid dihydrate) is a novel anti-allergic agent that has both histamine H1-receptor antagonist and anti-inflammatory activities. In this study, we evaluated the efficacy of TAK-427 on acute nasal responses and nasal obstruction using various guinea pig models of allergic rhinitis. TAK-427 inhibited the histamine-induced nasal reactions with an ID50 value of 0.633 mg/kg, p.o. TAK-427 (0.1-10 mg/kg, p.o.) and most histamine H1-receptor antagonists tested inhibited the increase in intranasal pressure, nasal hypersecretion, sneezing and nasal itching caused by a single antigen challenge in sensitized guinea pigs. In addition, TAK-427 (0.3, 30 mg/kg, p.o.) significantly inhibited the development of nasal obstruction when sensitized guinea pigs were repeatedly challenged via inhalation with Japanese cedar pollen, whereas the histamine H1-receptor antagonist, azelastine (1 mg/kg, p.o.), and ketotifen (1 mg/kg, p.o.) were without effect. These results suggest that TAK-427 might not only suppress acute nasal symptoms but also ameliorate nasal obstruction via the effects other than those as a histamine H1-receptor antagonist.

Collaboration


Dive into the Yasuko Ashida's collaboration.

Top Co-Authors

Avatar

Akio Miyake

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yasuhiko Kawano

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hisashi Kuriki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yoshitaka Maki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tatsumi Matsumoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Mitsuru Shiraishi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Taketoshi Saijo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

H. Makino

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hideaki Nagaya

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masahiro Kajino

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge