Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuko Bando is active.

Publication


Featured researches published by Yasuko Bando.


Circulation | 2012

Dipeptidyl Peptidase-4 Modulates Left Ventricular Dysfunction in Chronic Heart Failure via Angiogenesis-Dependent and -Independent Actions

Toshimasa Shigeta; Morihiko Aoyama; Yasuko Bando; Akio Monji; Toko Mitsui; Miwa Takatsu; Xiang-Wu Cheng; Takahiro Okumura; Akihiro Hirashiki; Kohzo Nagata; Toyoaki Murohara

Background— The inhibition of dipeptidyl peptidase-4 (DPP4) protects the heart from acute myocardial ischemia. However, the role of DPP4 in chronic heart failure independent of coronary artery disease remains unclear. Methods and Results— We first localized the membrane-bound form of DPP4 to the capillary endothelia of rat and human heart tissue. Diabetes mellitus promoted the activation of the membrane-bound form of DPP4, leading to reduced myocardial stromal cell-derived factor-1&agr; concentrations and resultant angiogenic impairment in rats. The diabetic rats exhibited diastolic left ventricular dysfunction (DHF) with enhanced interstitial fibrosis caused partly by the increased ratio of matrix metalloproteinase-2 to tissue inhibitor of metalloproteinase-2 in a DPP4-dependent fashion. Both genetic and pharmacological DPP4 suppression reversed the stromal cell-derived factor-1&agr;–dependent microvasculopathy and DHF associated with diabetes mellitus. Pressure overload induced DHF, which was reversed by DPP4 inhibition via a glucagon-like peptide-1/cAMP-dependent mechanism distinct from that for diabetic heart. In patients with DHF, the circulating DPP4 activity in peripheral veins was associated with that in coronary sinus and with E/e′, an echocardiographic parameter representing DHF. Comorbid diabetes mellitus increased the circulating DPP4 activities in both peripheral veins and coronary sinus. Conclusions— DPP4 inhibition reverses DHF via membrane-bound DPP4/stromal cell-derived factor-1&agr;–dependent local actions on angiogenesis and circulating DPP4/glucagon-like peptide-1–mediated inotropic actions. Myocardium-derived DPP4 activity in coronary sinus can be monitored by peripheral vein sampling, which partly correlates with DHF index; thus, circulating DPP4 may potentially serve as a biomarker for monitoring DHF.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes.

Akio Monji; Toko Mitsui; Yasuko Bando; Morihiko Aoyama; Toshimasa Shigeta; Toyoaki Murohara

Glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is a remedy for type 2 diabetes mellitus (T2DM). Ex-4 ameliorates cardiac dysfunction induced by myocardial infarction in preclinical and clinical settings. However, it remains unclear whether Ex-4 may modulate diabetic cardiomyopathy. We tested the impact of Ex-4 on two types of diabetic cardiomyopathy models, genetic (KK) and acquired T2DM induced by high-fat diet [diet-induced obesity (DIO)], to clarify whether Ex-4 may combat independently of etiology. Each type of mice was divided into Ex-4 (24 nmol·kg(-1)·day(-1) for 40 days; KK-ex4 and DIO-ex4) and vehicle (KK-v and DIO-v) groups. Ex-4 ameliorated systemic and cardiac insulin resistance and dyslipidemia in both T2DM models. T2DM mice exhibited systolic (DIO-v) and diastolic (DIO-v and KK-v) left ventricular dysfunctions, which were restored by Ex-4 with reduction in left ventricular hypertrophy. DIO-v and KK-v exhibited increased myocardial fibrosis and steatosis (lipid accumulation), in which were observed cardiac mitochondrial remodeling and enhanced mitochondrial oxidative damage. Ex-4 treatment reversed these cardiac remodeling and oxidative stress. Cytokine array revealed that Ex-4-sensitive inflammatory cytokines were ICAM-1 and macrophage colony-stimulating factor. Ex-4 ameliorated myocardial oxidative stress via suppression of NADPH oxidase 4 with concomitant elevation of antioxidants (SOD-1 and glutathione peroxidase). In conclusion, GLP-1R agonism reverses cardiac remodeling and dysfunction observed in T2DM via normalizing imbalance of lipid metabolism and related inflammation/oxidative stress.


Hypertension | 2011

Angiotensin Type 1 Receptor Blocker Reduces Intimal Neovascularization and Plaque Growth in Apolipoprotein E–Deficient Mice

Xian Wu Cheng; Haizhen Song; Takeshi Sasaki; Lina Hu; Aiko Inoue; Yasuko Bando; Guo-Ping Shi; Masafumi Kuzuya; Kenji Okumura; Toyoaki Murohara

The interactions between the renin-angiotensin system and neovascularization in atherosclerotic plaque development are unclear. We investigated the effects of angiotensin II type 1 receptor antagonism in the pathogenesis of atherosclerosis in apolipoprotein E–deficient (ApoE−/−) mice with a special focus on plaque neovascularization. ApoE−/− mice fed a high-fat diet were randomly assigned to 1 of 2 groups and administered vehicle or olmesartan for 12 weeks. Quantification of plaque areas at the aortic root and in the thoracic and abdominal aorta revealed that, in all 3 of the regions, olmesartan reduced intimal neovessel density and the mRNA levels of toll-like receptor (TLR) 2 and TLR4. Olmesartan increased the levels of collagen and elastin, reduced the level of macrophages in the aortic root, and reduced the mRNA and the activity of matrix metalloproteinase (MMP) 2 in aortic roots and thoracic aortas. Aortic ring assay revealed that olmesartan-treated ApoE−/− mice had a markedly lower angiogenic response than that of untreated ApoE−/− mice. Bone marrow–derived endothelial progenitor cell-like c-Kit+ cells from olmesartan-treated ApoE−/− mice showed marked impairment of cellular functions and lower expression of TLR2/TLR4 and MMP-2 compared with those of untreated controls. MMP-2 deficiency reduced intimal neovessel density and atherosclerotic lesion formation. Olmesartan and small-interfering RNA targeting TLR2 reduced the levels of TLR2, and MMP-2 mRNA induced angiotensin II in cultured endothelial cells. Angiotensin II type 1 receptor antagonism appears to inhibit intimal neovascularization in ApoE−/− mice, partly by reducing TLR2/TLR4-mediated inflammatory action and MMP activation, thus decreasing atherosclerotic plaque growth and increasing plaque instability.


Journal of Biological Chemistry | 2014

Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism

Masakazu Ishii; Rei Shibata; Kazuhisa Kondo; Takahiro Kambara; Yuuki Shimizu; Tohru Tanigawa; Yasuko Bando; Masahiro Nishimura; Noriyuki Ouchi; Toyoaki Murohara

Background: DPP-4 inhibitors exert pleiotropic effects that modulate cardiovascular disease. Results: The DPP-4 inhibitor vildagliptin stimulates ischemia-induced revascularization through eNOS signaling. The angiogenic actions of vildagliptin are mediated by both GLP-1-dependent and -independent mechanisms. Conclusion: DPP-4 inhibitor promotes endothelial cell function via eNOS signaling. Significance: DPP-4 inhibitor could be beneficial in patients with diabetes-related vascular complications. Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production.


PLOS Medicine | 2016

The Effect of Sitagliptin on Carotid Artery Atherosclerosis in Type 2 Diabetes: The PROLOGUE Randomized Controlled Trial

Jun-ichi Oyama; Toyoaki Murohara; Masafumi Kitakaze; Tomoko Ishizu; Yasunori Sato; Kazuo Kitagawa; Haruo Kamiya; Masayoshi Ajioka; Masaharu Ishihara; Kazuoki Dai; Mamoru Nanasato; Masataka Sata; Koji Maemura; Hirofumi Tomiyama; Yukihito Higashi; Kohei Kaku; Hirotsugu Yamada; Munehide Matsuhisa; Kentaro Yamashita; Yasuko Bando; Naoki Kashihara; Shinichiro Ueda; Teruo Inoue; Atsushi Tanaka; Koichi Node; Prologue Study Investigators

Background Experimental studies have suggested that dipeptidyl peptidase-4 (DPP-4) inhibitors provide cardiovascular protective effects. We performed a randomized study to evaluate the effects of sitagliptin added on to the conventional therapy compared with conventional therapy alone (diet, exercise, and/or drugs, except for incretin-related agents) on the intima-media thickness (IMT) of the carotid artery, a surrogate marker for the evaluation of atherosclerotic cardiovascular disease, in people with type 2 diabetes mellitus (T2DM). Methods and Findings We used a multicenter PROBE (prospective, randomized, open label, blinded endpoint) design. Individuals aged ≥30 y with T2DM (6.2% ≤ HbA1c < 9.4%) were randomly allocated to receive either sitagliptin (25 to 100 mg/d) or conventional therapy. Carotid ultrasound was performed at participating medical centers, and all parameters were measured in a core laboratory. Of the 463 enrolled participants with T2DM, 442 were included in the primary analysis (sitagliptin group, 222; conventional therapy group, 220). Estimated mean (± standard error) common carotid artery IMT at 24 mo of follow-up in the sitagliptin and conventional therapy groups was 0.827 ± 0.007 mm and 0.837 ± 0.007 mm, respectively, with a mean difference of −0.009 mm (97.2% CI −0.028 to 0.011, p = 0.309). HbA1c level at 24 mo was significantly lower with sitagliptin than with conventional therapy (6.56% ± 0.05% versus 6.72% ± 0.05%, p = 0.008; group mean difference −0.159, 95% CI −0.278 to −0.041). Episodes of serious hypoglycemia were recorded only in the conventional therapy group, and the rate of other adverse events was not different between the two groups. As it was not a placebo-controlled trial and carotid IMT was measured as a surrogate marker of atherosclerosis, there were some limitations of interpretation. Conclusions In the PROLOGUE study, there was no evidence that treatment with sitagliptin had an additional effect on the progression of carotid IMT in participants with T2DM beyond that achieved with conventional treatment. Trial Registration University Hospital Medical Information Network Clinical Trials Registry UMIN000004490


Circulation-heart Failure | 2016

Dipeptidyl Peptidase 4 Inhibition Alleviates Shortage of Circulating Glucagon-Like Peptide-1 in Heart Failure and Mitigates Myocardial Remodeling and Apoptosis via the Exchange Protein Directly Activated by Cyclic AMP 1/Ras-Related Protein 1 Axis

Morihiko Aoyama; Haruya Kawase; Yasuko Bando; Akio Monji; Toyoaki Murohara

Background—Ample evidence demonstrates cardiovascular protection by incretin-based therapy using dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 (GLP-1) under either diabetic or nondiabetic condition. Their action on myocardium is mediated by the cyclic AMP (cAMP) signal; however, the pathway remains uncertain. This study was conducted to address the effect of DPP4i/GLP-1/cAMP axis on cardiac dysfunction and remodeling induced by pressure overload (thoracic aortic constriction [TAC]) independently of diabetes mellitus. Methods and Results—DPP4i (alogliptin, 10 mg/kg per day for 4 weeks) prevented TAC-induced contractile dysfunction, remodeling, and apoptosis of myocardium in a GLP-1 receptor antagonist (exendin [9-39])–sensitive fashion. In TAC, circulating level of GLP-1 (in pmol/L; 0.86±0.10 for TAC versus 2.13±0.54 for sham control) unexpectedly declined and so did the myocardial cAMP concentration (in pmol/mg protein; 33.0±1.4 for TAC versus 42.2±1.5 for sham). Alogliptin restored the decline in the GLP-1/cAMP levels observed in TAC, thereby augmented cAMP signaling effectors (protein kinase A [PKA] and exchange protein directly activated by cAMP 1 [EPAC1]). In vitro assay revealed distinct roles of PKA and EPAC1 in cardiac apoptosis. EPAC1 promoted cardiomyocyte survival via concomitant increase in B cell lymphoma-2 (Bcl-2) expression and activation of small G protein Ras-related protein 1 (Rap1) in a cAMP dose–dependent and PKA–independent fashion. Conclusions—DPP4i restores cardiac remodeling and apoptosis caused by the pathological decline in circulating GLP-1 in response to pressure overload. EPAC1 is essential for cardiomyocyte survival via the cAMP/Rap1 activation independently of PKA.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Effects of various types of anesthesia on hemodynamics, cardiac function, and glucose and lipid metabolism in rats

Yusuke Sano; Shogo Ito; Mamoru Yoneda; Kai Nagasawa; Natsumi Matsuura; Yuichiro Yamada; Ayako Uchinaka; Yasuko Bando; Toyoaki Murohara; Kohzo Nagata

Anesthesia can affect respiratory, circulatory, and endocrine systems but is necessary for certain experimental procedures such as echocardiography and blood sampling in small animals. We have now investigated the effects of four types of anesthesia [pentobarbital sodium (PENT), ketamine-xylazine (K/X), and low- or high-dose isoflurane (ISO)] on hemodynamics, cardiac function, and glucose and lipid metabolism in Sprague-Dawley rats. Aortic pressure, heart rate, and echocardiographic parameters were measured at various time points up to 45 min after the induction of anesthesia, and blood was then collected for measurement of parameters of glucose and lipid metabolism. Systolic aortic pressure remained constant in the PENT group, whereas it showed a biphasic pattern in the K/X group and a gradual decline in the ISO groups. Marked bradycardia was observed in the K/X group. The serum glucose concentration was increased and the plasma insulin level was reduced in the K/X and ISO groups compared with the PENT group. The concentrations of free fatty acids and norepinephrine in plasma were increased in the K/X group. Despite the metabolic effects of K/X and ISO, our results suggest that the marked bradycardic effect of K-X renders this combination appropriate for measurement of Doppler-derived indexes of left ventricular diastolic function, whereas the relative ease with which the depth of anesthesia can be controlled with ISO makes it suitable for manipulations or data collection over long time periods. On the other hand, PENT may be best suited for experiments that focus on measurement of cardiac function by M-mode echocardiography and metabolic parameters.


Diabetes Research and Clinical Practice | 2011

Association of diabetes mellitus with myocardial collagen accumulation and relaxation impairment in patients with dilated cardiomyopathy.

Masaki Sakakibara; Akihiro Hirashiki; Xian Wu Cheng; Yasuko Bando; Kei Ohshima; Takahiro Okumura; Hidehito Funahashi; Satoru Ohshima; Toyoaki Murohara

AIMS To assess the effects of diabetes mellitus (DM) on myocardial collagen accumulation, myocardial relaxation, and prognosis in patients with dilated cardiomyopathy (DCM). METHODS A total of 102 consecutive DCM patients with a New York Heart Association functional class of I or II were enrolled. Patients were allocated to two groups on the basis of the presence (DCM+DM group, n = 30) or absence (DCM-DM group, n = 72) of DM. Cardiac catheterization performed and left ventricular pressure were measured in all patients. The pressure half-time (T(1/2)) was determined as an index of myocardial relaxation function. Endomyocardial specimens were subjected to histological analysis. RESULTS The T(1/2) was significantly longer (P < 0.001) and the collagen volume fraction was significantly greater (P = 0.018) in the DCM + DM group than in the DCM-DM group. Multivariate analysis showed that DM was significantly associated with increased incidence of cardiac events (hazard ratio, 3.7; 95% confidence interval, 1.05 to 13.16; P = 0.03). CONCLUSIONS The prognosis of DCM patients with DM was worse than that of those without DM. Impairment of myocardial relaxation, increased myocardial fibrosis, and mitochondrial degeneration associated with DM may underlie this difference.


Journal of the American Heart Association | 2017

Dipeptidyl Peptidase‐4 Regulates Hematopoietic Stem Cell Activation in Response to Chronic Stress

Enbo Zhu; Lina Hu; Hongxian Wu; Limei Piao; Guangxian Zhao; Aiko Inoue; Weon Kim; Chenglin Yu; Wenhu Xu; Yasuko Bando; Xiang Li; Yanna Lei; Chang-Ning Hao; Kyosuke Takeshita; Woo-Shik Kim; Kenji Okumura; Toyoaki Murohara; Masafumi Kuzuya; Xian Wu Cheng

Background DPP4 (Dipeptidyl peptidase‐4)‐GLP‐1 (glucagon‐like peptide‐1) and its receptor (GLP‐1R) axis has been involved in several intracellular signaling pathways. The Adrβ3 (β3‐adrenergic receptor)/CXCL12 (C‐X‐C motif chemokine 12) signal was required for the hematopoiesis. We investigated the novel molecular requirements between DPP4‐GLP‐1/GLP‐1 and Adrβ3/CXCL12 signals in bone marrow (BM) hematopoietic stem cell (HSC) activation in response to chronic stress. Methods and Results Male 8‐week‐old mice were subjected to 4‐week intermittent restrain stress and orally treated with vehicle or the DPP4 inhibitor anagliptin (30 mg/kg per day). Control mice were left undisturbed. The stress increased the blood and brain DPP4 levels, the plasma epinephrine and norepinephrine levels, and the BM niche cell Adrβ3 expression, and it decreased the plasma GLP‐1 levels and the brain GLP‐1R and BM CXCL12 expressions. These changes were reversed by DPP4 inhibition. The stress activated BM sca‐1highc‐Kithigh CD48low CD150high HSC proliferation, giving rise to high levels of blood leukocytes and monocytes. The stress‐activated HSC proliferation was reversed by DPP4 depletion and by GLP‐1R activation. Finally, the selective pharmacological blocking of Adrβ3 mitigated HSC activation, accompanied by an improvement of CXCL12 gene expression in BM niche cells in response to chronic stress. Conclusions These findings suggest that DPP4 can regulate chronic stress‐induced BM HSC activation and inflammatory cell production via an Adrβ3/CXCL12‐dependent mechanism that is mediated by the GLP‐1/GLP‐1R axis, suggesting that the DPP4 inhibition or the GLP‐1R stimulation may have applications for treating inflammatory diseases.


JACC: Basic to Translational Science | 2017

Development and Validation of a Novel Cuff-Less Blood Pressure Monitoring Device

Naoki Watanabe; Yasuko Bando; Taiji Kawachi; Hiroshi Yamakita; Kouki Futatsuyama; Yoshikazu Honda; Hisae Yasui; Kazuyuki Nishimura; Takahiro Kamihara; Takahiro Okumura; Hideki Ishii; Takahisa Kondo; Toyoaki Murohara

Visual Abstract

Collaboration


Dive into the Yasuko Bando's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge