Yasumasa Mototani
Tsurumi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yasumasa Mototani.
Journal of Clinical Investigation | 2014
Satoshi Okumura; Takayuki Fujita; Wenqian Cai; Meihua Jin; Iyuki Namekata; Yasumasa Mototani; Huiling Jin; Yoshiki Ohnuki; Yayoi Tsuneoka; Reiko Kurotani; Kenji Suita; Yuko Kawakami; Takaya Abe; Hiroshi Kiyonari; Takashi Tsunematsu; Yunzhe Bai; Sayaka Suzuki; Yuko Hidaka; Masanari Umemura; Yasuhiro Ichikawa; Utako Yokoyama; Motohiko Sato; Fumio Ishikawa; Hiroko Izumi-Nakaseko; Satomi Adachi-Akahane; Hikaru Tanaka; Yoshihiro Ishikawa
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.
PLOS ONE | 2015
Daisuke Umeki; Yoshiki Ohnuki; Yasumasa Mototani; Kouichi Shiozawa; Kenji Suita; Takayuki Fujita; Yoshiki Nakamura; Yasutake Saeki; Satoshi Okumura
Background Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB) induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC) isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX)-induced muscle atrophy and fast-to-slow MHC isoform transition. Methodology We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC) composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1) expression, Akt/mammalian target of rapamycin (mTOR) pathway, and calcineurin pathway) and atrophic signaling (Akt/Forkhead box-O (FOXO) pathway and myostatin expression) in masseter muscle of rats treated with DEX and/or CB. Results and Conclusion Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth), and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.
Journal of Physiological Sciences | 2015
Takehisa Kamide; Satoshi Okumura; Samik Ghosh; Yoko Shinoda; Yasumasa Mototani; Yoshiki Ohnuki; Huiling Jin; Wenqian Cai; Kenji Suita; Itaru Sato; Masanari Umemura; Takayuki Fujita; Utako Yokoyama; Motohiko Sato; Kazuharu Furutani; Hiroaki Kitano; Yoshihiro Ishikawa
Cyclic adenosine monophosphate (cAMP) and Ca2+ levels may oscillate in harmony within excitable cells; a mathematical oscillation loop model, the Cooper model, of these oscillations was developed two decades ago. However, in that model all adenylyl cyclase (AC) isoforms were assumed to be inhibited by Ca2+, and it is now known that the heart expresses multiple AC isoforms, among which the type 5/6 isoforms are Ca2+-inhibitable whereas the other five (AC2, 3, 4, 7, and 9) are not. We used a computational systems biology approach with CellDesigner simulation software to develop a comprehensive graphical map and oscillation loop model for cAMP and Ca2+. This model indicated that Ca2+-mediated inhibition of AC is essential to create oscillations of Ca2+ and cAMP, and the oscillations were not altered by incorporation of phosphodiesterase-mediated cAMP hydrolysis or PKA-mediated inhibition of AC into the model. More importantly, they were created but faded out immediately in the co-presence of Ca2+-noninhibitable AC isoforms. Because the subcellular locations of AC isoforms are different, spontaneous cAMP and Ca2+ oscillations may occur within microdomains containing only Ca2+-inhibitable isoforms in cardiac myocytes, which might be necessary for fine tuning of excitation–contraction coupling.
The Journal of Physiology | 2014
Yoshiki Ohnuki; Daisuke Umeki; Yasumasa Mototani; Huiling Jin; Wenqian Cai; Kouichi Shiozawa; Kenji Suita; Yasutake Saeki; Takayuki Fujita; Yoshihiro Ishikawa; Satoshi Okumura
Epac (exchange protein directly activated by cyclic AMP (cAMP)), a PKA‐independent cAMP sensor, plays important roles in multiple cellular processes, but its role in the pathogenesis of skeletal muscle hypertrophy and myosin heavy chain (MHC) transition is poorly understood. Chronic stimulation of β2‐adrenoceptor (β2‐AR) with clenbuterol (CB), a selective β2‐AR agonist, induced masseter muscle hypertrophy in wild‐type (WT) mice, but not in Epac1‐null mice (Epac1KO), even if slow‐to‐fast MHC isoform transition was similarly induced by CB treatment in both WT and Epac1KO. Disruption of Epac1 inhibited development of masseter muscle hypertrophy concomitantly with decreased phosphorylation of Akt and its downstream molecules 70 kDa ribosomal S6 kinase 1 and eukaryotic initiation factor 4E‐binding protein 1, and also, in parallel, glycogen synthase kinase‐3β. Disruption of Epac1 decreased histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy. We conclude that Epac1 induces β2‐AR‐mediated masseter muscle hypertrophy without influencing slow‐to‐fast MHC isoform transition, probably via activation of Akt and its downstream molecules and increase of CaMKII‐mediated HDAC4 phosphorylation.
Journal of Molecular and Cellular Cardiology | 2017
Huiling Jin; Takayuki Fujita; Meihua Jin; Reiko Kurotani; Iyuki Namekata; Yuko Hidaka; Wenqian Cai; Kenji Suita; Yoshiki Ohnuki; Yasumasa Mototani; Kouichi Shiozawa; Rajesh Prajapati; Chen Liang; Masanari Umemura; Utako Yokoyama; Motohiko Sato; Hikaru Tanaka; Satoshi Okumura; Yoshihiro Ishikawa
Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic stimulation leads to coupling of the β-adrenergic receptor/Gs/adenylyl cyclase, a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP, thereby stimulating protein kinase A (PKA) and ultimately compensating for cardiac dysfunction. The mechanism of such compensation by catecholamine has been traditionally understood as PKA-mediated enforcement of cardiac contractility. We hypothesized that exchange protein activated by cyclic AMP (Epac), a new target of cAMP signaling that functions independently of protein kinase A, also plays a key role in protection against acute stresses or changes in hemodynamic overload. Lipopolysaccharide injection induced cytokine release and severe cardiac dysfunction in mouse. In mouse overexpressing Epac1 in the heart, however, the magnitude of such dysfunction was significantly smaller. Epac1 overexpression inhibited the Jak-STAT pathway, as indicated by decreased phosphorylation of STAT3 and increased SOCS3 expression, with subsequent inhibition of iNOS expression. In cultured cardiomyocytes treated with isoproterenol or forskolin, the increase of SOCS3 expression was blunted when Epac1 or PKCα was silenced with siRNA. Activation of the cAMP/Epac/PKCα pathway protected the heart against cytokine-induced cardiac dysfunction, suggesting a new role of catecholamine signaling in compensating for cardiac dysfunction in heart failure. Epac1 and its downstream pathways may be novel targets for treating cardiac dysfunction in endotoxemia.
Physiological Reports | 2016
Yoshiki Ohnuki; Daisuke Umeki; Yasumasa Mototani; Kouichi Shiozawa; Megumi Nariyama; Aiko Ito; Naoya Kawamura; Yuka Yagisawa; Huiling Jin; Wenqian Cai; Kenji Suita; Yasutake Saeki; Takayuki Fujita; Yoshihiro Ishikawa; Satoshi Okumura
Clenbuterol (CB), a selective β2‐adrenergic receptor (AR) agonist, induces muscle hypertrophy and counteracts muscle atrophy. However, it is paradoxically less effective in slow‐twitch muscle than in fast‐twitch muscle, though slow‐twitch muscle has a greater density of β‐AR. We recently demonstrated that Epac1 (exchange protein activated by cyclic AMP [cAMP]1) plays a pivotal role in β2‐AR‐mediated masseter muscle hypertrophy through activation of the Akt and calmodulin kinase II (CaMKII)/histone deacetylase 4 (HDAC4) signaling pathways. Here, we investigated the role of Epac1 in the differential hypertrophic effect of CB using tibialis anterior muscle (TA; typical fast‐twitch muscle) and soleus muscle (SOL; typical slow‐twitch muscle) of wild‐type (WT) and Epac1‐null mice (Epac1KO). The TA mass to tibial length (TL) ratio was similar in WT and Epac1KO at baseline and was significantly increased after CB infusion in WT, but not in Epac1KO. The SOL mass to TL ratio was also similar in WT and Epac1KO at baseline, but CB‐induced hypertrophy was suppressed in both mice. In order to understand the mechanism involved, we measured the protein expression levels of β‐AR signaling‐related molecules, and found that phosphodiesterase 4 (PDE4) expression was 12‐fold greater in SOL than in TA. These results are consistent with the idea that increased PDE4‐mediated cAMP hydrolysis occurs in SOL compared to TA, resulting in a reduced cAMP concentration that is insufficient to activate Epac1 and its downstream Akt and CaMKII/HDAC4 hypertrophic signaling pathways in SOL of WT. This scenario can account for the differential effects of CB on fast‐ and slow‐twitch muscles.
Journal of Physiological Sciences | 2018
Huiling Jin; Takayuki Fujita; Meihua Jin; Reiko Kurotani; Yuko Hidaka; Wenqian Cai; Kenji Suita; Rajesh Prajapati; Chen Liang; Yoshiki Ohnuki; Yasumasa Mototani; Masanari Umemura; Utako Yokoyama; Motohiko Sato; Satoshi Okumura; Yoshihiro Ishikawa
Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic and thus catecholamine signaling is activated thereafter to compensate for cardiac dysfunction. The mechanism of such compensation by catecholamine signaling has been traditionally understood to be cyclic AMP-dependent protein kinase (PKA)-mediated enforcement of cardiac contractility. We hypothesized that the exchange protein activated by cAMP (Epac), a newly identified target of cAMP signaling that functions independently of PKA, also plays a key role in this mechanism. In cultured cardiac myocytes, activation of Epac attenuated the inhibitory effect of interleukin-6 on the increase of intracellular Ca2+ concentration and contractility in response to isoproterenol, most likely through inhibition of the Jak-STAT pathway via SOCS3, with subsequent changes in inducible nitric oxide synthase expression. These findings suggest a new role of catecholamine signaling in compensating for cardiac dysfunction in heart failure. Epac and its downstream pathway may be a novel target for treating cardiac dysfunction in endotoxemia.
Pflügers Archiv: European Journal of Physiology | 2018
Yasumasa Mototani; Tadashi Okamura; Motohito Goto; Yukiko Shimizu; Rieko Yanobu-Takanashi; Aiko Ito; Naoya Kawamura; Yuka Yagisawa; Daisuke Umeki; Megumi Nariyama; Kenji Suita; Yoshiki Ohnuki; Kouichi Shiozawa; Yoshinori Sahara; Tohru Kozasa; Yasutake Saeki; Satoshi Okumura
The G protein-regulated inducer of neurite growth (GRIN) family has three isoforms (GRIN1-3), which bind to the Gαi/o subfamily of G protein that mediate signal processing via G protein-coupled receptors (GPCRs). Here, we show that GRIN3 is involved in regulation of dopamine-dependent behaviors and is essential for activation of the dopamine receptors (DAR)-β-arrestin signaling cascade. Analysis of functional regions of GRIN3 showed that a di-cysteine motif (Cys751/752) is required for plasma membrane localization. GRIN3 was co-immunoprecipitated with GPCR kinases 2/6 and β-arrestins 1/2. Among GRINs, only GRIN3, which is highly expressed in striatum, strongly interacted with β-arrestin 2. We also generated GRIN3-knockout mice (GRIN3KO). GRIN3KO exhibited reduced locomotor activity and increased anxiety-like behavior in the elevated maze test, as well as a reduced locomoter response to dopamine stimulation. We also examined the phosphorylation of Akt at threonine 308 (phospho308-Akt), which is dephosphorylated via a β-arrestin 2-mediated pathway. Dephosphorylation of phospho308-Akt via the D2R-β-arrestin 2 signaling pathway was completely abolished in striatum of GRIN3KO. Our results suggest that GRIN3 has a role in recruitment and assembly of proteins involved in β-arrestin-dependent, G protein-independent signaling.
Journal of Physiological Sciences | 2018
Kouichi Shiozawa; Yasumasa Mototani; Kenji Suita; Aiko Ito; Naoya Kawamura; Yuka Yagisawa; Ichiro Matsuo; Yoshio Hayakawa; Megumi Nariyama; Daisuke Umeki; Yasutake Saeki; Yoshiki Ohnuki; Satoshi Okumura
Although multiple factors influence food bite size, the relationship between food bite size per mouthful and mandible or tongue size remains poorly understood. Here, we examined the correlations between food bite size and the lower dental arch size (an indicator of tongue size) in human subjects with good oral and general health, using fish sausage and bread as test foods. Notably, bite size of both foods was significantly positively correlated with the lower dental arch size, whereas masticatory performance (measured in terms of glucose extraction from a gummy jelly) showed no dependence on bite size. Further, bite size was significantly positively correlated with the body mass index. Our findings suggest that larger bite size is associated with larger tongue size, which might be a contributory factor to obesity.
Journal of Pharmacological Sciences | 2012
Yunzhe Bai; Takashi Tsunematsu; Qibin Jiao; Yoshiki Ohnuki; Yasumasa Mototani; Kouichi Shiozawa; Meihua Jin; Wenqian Cai; Huiling Jin; Takayuki Fujita; Yasuhiro Ichikawa; Kenji Suita; Reiko Kurotani; Utako Yokoyama; Motohiko Sato; Kousaku Iwatsubo; Yoshihiro Ishikawa; Satoshi Okumura