Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasunori Kanaho is active.

Publication


Featured researches published by Yasunori Kanaho.


Cell | 1999

Phosphatidylinositol 4-Phosphate 5-Kinase α Is a Downstream Effector of the Small G Protein ARF6 in Membrane Ruffle Formation

Akira Honda; Masahiro Nogami; Takeaki Yokozeki; Masakazu Yamazaki; Hiroshi Nakamura; Hiroshi Watanabe; Kazumasa Kawamoto; Kazuhisa Nakayama; Andrew J. Morris; Michael A. Frohman; Yasunori Kanaho

Synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a signaling phospholipid, is primarily carried out by phosphatidylinositol 4-phosphate 5-kinase [PI(4)P5K], which has been reported to be regulated by RhoA and Rac1. Unexpectedly, we find that the GTPgammaS-dependent activator of PI(4)P5Kalpha is the small G protein ADP-ribosylation factor (ARF) and that the activation strictly requires phosphatidic acid, the product of phospholipase D (PLD). In vivo, ARF6, but not ARF1 or ARF5, spatially coincides with PI(4)P5Kalpha. This colocalization occurs in ruffling membranes formed upon AIF4 and EGF stimulation and is blocked by dominant-negative ARF6. PLD2 similarly translocates to the ruffles, as does the PH domain of phospholipase Cdelta1, indicating locally elevated PI(4,5)P2. Thus, PI(4)P5Kalpha is a downstream effector of ARF6 and when ARF6 is activated by agonist stimulation, it triggers recruitment of a diverse but interactive set of signaling molecules into sites of active cytoskeletal and membrane rearrangement.


Nature Cell Biology | 2007

Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1

Miki Nishio; Ken-ichi Watanabe; Junko Sasaki; Choji Taya; Shunsuke Takasuga; Ryota Iizuka; Tamas Balla; Masakazu Yamazaki; Hiroshi Watanabe; Reietsu Itoh; Shoko Kuroda; Yasuo Horie; Irmgard Förster; Tak W. Mak; Hiromichi Yonekawa; Josef M. Penninger; Yasunori Kanaho; Akira Suzuki; Takehiko Sasaki

Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) regulate cell migration, but the role of PtdIns(3,4,5)P3-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P3 phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P3 phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P3 metabolism in living primary cells, we generated a novel transgenic mouse (AktPH–GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P3. Time-lapse footage showed rapid, localized binding of AktPH–GFP to the leading edge membrane of chemotaxing ship1+/+AktPH–GFP Tg neutrophils, but only diffuse localization in ship1−/−AktPH–GFP Tg neutrophils. By directing where PtdIns(3,4,5)P3 accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.


Science | 2009

Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis.

Akihiko Nishikimi; Hideo Fukuhara; Wenjuan Su; Tsunaki Hongu; Shunsuke Takasuga; Hisashi Mihara; Qinhong Cao; Fumiyuki Sanematsu; Motomu Kanai; Hiroshi Hasegawa; Yoshihiko Tanaka; Masakatsu Shibasaki; Yasunori Kanaho; Takehiko Sasaki; Michael A. Frohman; Yoshinori Fukui

During chemotaxis, activation of the small guanosine triphosphatase Rac is spatially regulated to organize the extension of membrane protrusions in the direction of migration. In neutrophils, Rac activation is primarily mediated by DOCK2, an atypical guanine nucleotide exchange factor. Upon stimulation, we found that DOCK2 rapidly translocated to the plasma membrane in a phosphatidylinositol 3,4,5-trisphosphate–dependent manner. However, subsequent accumulation of DOCK2 at the leading edge required phospholipase D–mediated synthesis of phosphatidic acid, which stabilized DOCK2 there by means of interaction with a polybasic amino acid cluster, resulting in increased local actin polymerization. When this interaction was blocked, neutrophils failed to form leading edges properly and exhibited defects in chemotaxis. Thus, intracellular DOCK2 dynamics are sequentially regulated by distinct phospholipids to localize Rac activation during neutrophil chemotaxis.


Journal of Biological Chemistry | 2005

Local Change in Phospholipid Composition at the Cleavage Furrow Is Essential for Completion of Cytokinesis

Kazuo Emoto; Hironori Inadome; Yasunori Kanaho; Shuh Narumiya; Masato Umeda

Cell division ends up with the membrane separation of two daughter cells, presumably by a membrane fusion that requires dynamic changes of the distribution and the composition of membrane lipids. We have previously shown that a membrane lipid phosphatidylethanolamine (PE) is exposed on the cell surface of the cleavage furrow during late cytokinesis and that this PE movement is involved in regulation of the contractile ring disassembly. Here we show that immobilization of cell surface PE by a PE-binding peptide blocks the RhoA inactivation in the late stage of cytokinesis. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), but not other RhoA effectors, is co-localized with RhoA in the peptide-treated cells. Indeed, PIP5K and its product phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are localized to the cleavage furrow of normally dividing cells. Both overexpression of a kinase-deficient PIP5K mutant and microinjection of anti-PI(4,5)P2 antibodies compromise cytokinesis by preventing local accumulation of PI(4,5)P2 in the cleavage furrow. These findings demonstrate that the localized production of PI(4,5)P2 is required for the proper completion of cytokinesis and that the possible formation of a unique lipid domain in the cleavage furrow membrane may play a crucial role in coordinating the contractile rearrangement with the membrane remodeling during late cytokinesis.


Journal of Biological Chemistry | 1999

Interaction of the small G protein RhoA with the C terminus of human phospholipase D1.

Masakazu Yamazaki; Yue Zhang; Hiroshi Watanabe; Takeaki Yokozeki; Sigeo Ohno; Kozo Kaibuchi; Hideki Shibata; Hideyuki Mukai; Yoshitaka Ono; Michael A. Frohman; Yasunori Kanaho

Mammalian phosphatidylcholine-specific phospholipase D1 (PLD1) is a signal transduction-activated enzyme thought to function in multiple cell biological settings including the regulation of membrane vesicular trafficking. PLD1 is activated by the small G proteins, ADP-ribosylation factor (ARF) and RhoA, and by protein kinase C-α (PKC-α). This stimulation has been proposed to involve direct interaction and to take place at a distinct site in PLD1 for each activator. In the present study, we employed the yeast two-hybrid system to attempt to identify these sites. Successful interaction of ARF and PKC-α with PLD1 was not achieved, but a C-terminal fragment of human PLD1 (denoted “D4”) interacted with the active mutant of RhoA, RhoAVal-14. Deletion of the CAAX box from RhoAVal-14 decreased the strength of the interaction, suggesting that lipid modification of RhoA is important for efficient binding to PLD1. The specificity of the interaction was validated by showing that the PLD1 D4 fragment interacts with glutathione S-transferase-RhoA in vitro in a GTP-dependent manner and that it associates with RhoAVal-14 in COS-7 cells, whereas the N-terminal two-thirds of PLD1 does not. Finally, we show that recombinant D4 peptide inhibits RhoA-stimulated PLD1 activation but not ARF- or PKC-α-stimulated PLD1 activation. These results conclusively demonstrate that the C-terminal region of PLD1 contains the RhoA-binding site and suggest that the ARF and PKC interactions occur elsewhere in the protein.


The EMBO Journal | 2007

Role of activation of PIP5Kγ661 by AP‐2 complex in synaptic vesicle endocytosis

Akiko Nakano-Kobayashi; Masakazu Yamazaki; Takamitsu Unoki; Tsunaki Hongu; Chie Murata; Ryo Taguchi; Toshiaki Katada; Michael A. Frohman; Takeaki Yokozeki; Yasunori Kanaho

Synaptic vesicles (SVs) are retrieved by clathrin‐mediated endocytosis at the nerve terminals. Phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2] drives this event by recruiting the components of the endocytic machinery. However, the molecular mechanisms that result in local generation of PI(4,5)P2 remain unclear. We demonstrate here that AP‐2 complex directly interacts with phosphatidylinositol 4‐phosphate 5‐kinase γ661 (PIP5Kγ661), the major PI(4,5)P2‐producing enzyme in the brain. The β2 subunit of AP‐2 was found to bind to the C‐terminal tail of PIP5Kγ661 and cause PIP5Kγ661 activation. The interaction is regulated by PIP5Kγ661 dephosphorylation, which is triggered by depolarization in mouse hippocampal neurons. Finally, overexpression of the PIP5Kγ661 C‐terminal region in hippocampal neurons suppresses depolarization‐dependent SV endocytosis. These findings provide evidence for the molecular mechanism through which PIP5Kγ661 locally generates PI(4,5)P2 in hippocampal neurons and suggest a model in which the interaction trigger SV endocytosis.


FEBS Letters | 1995

ACCUMULATION OF CYCLIC ADP-RIBOSE MEASURED BY A SPECIFIC RADIOIMMUNOASSAY IN DIFFERENTIATED HUMAN LEUKEMIC HL-60 CELLS WITH ALL-TRANS-RETINOIC ACID

Katsunobu Takahashi; Iwao Kukimoto; Ken-ichi Tokita; Kiyoshi Inageda; Shinichi Inoue; Kenji Kontani; Shin-ichi Hoshino; Hiroshi Nishina; Yasunori Kanaho; Toshiaki Katada

Cyclic adenosine diphosphoribose (cADPR) is a novel candidate for the mediator of Ca2+ release from intracellular Ca2+ stores. The formation of this cyclic nucleotide is catalyzed by not only Aplysia ADP‐ribosyl cyclase but also an ecto‐form enzyme of NAD+ glycohydrolase (NADase), which was previously identified as all‐trans‐retinoic acid (RA)‐inducible CD38 in human leukemic HL‐60 cells. In the present study, we developed a radioimmunoassay specific for cADPR, by which more than 100 fmol of cADPR could be detected without any interference by other nucleotides. The possible involvement of CD38 in the formation of cellular cADPR was investigated with the radioimmunoassay method. A marked increase in cellular cADPR was accompanied by all‐trans‐RA‐induced differentiation of HL‐60 cells. Moreover, a high level of cellular cADPR was observed in other leukemic cell lines, in which CD38 mRNA was expressed. Thus, CD38, which was initially identified as an NADase, appeared to be responsible for the formation of cellular cADPR.


Science Signaling | 2009

The Tyrosine Kinase Fer Is a Downstream Target of the PLD-PA Pathway that Regulates Cell Migration

Toshiki Itoh; Junya Hasegawa; Kazuya Tsujita; Yasunori Kanaho; Tadaomi Takenawa

Changes in membrane composition stimulate Fer activity to regulate actin remodeling and drive cell migration. Migration FX A key regulator of cell motility is the negatively charged lipid phosphatidic acid (PA), which can be generated from the membrane lipid phosphatidylcholine by phospholipase D (PLD). The mechanisms by which PA and PLD regulate cell migration are not well understood. Focusing on the cytosolic tyrosine kinase Fer, which promotes actin polymerization, Itoh et al. identified a PA-binding domain in Fer that they termed the FX domain. PA binding to Fer enhanced its kinase activity and required positively charged residues in the FX domain. Forced expression of Fer increased lamellipodia formation and migration compared to cells expressing a Fer mutant lacking the positively charged residues in the FX domain; these effects were dependent on PLD activity. Thus, Fer may link changes in membrane composition to actin remodeling events that drive cell migration. Phosphatidic acid (PA), which can be produced by phospholipase D (PLD), is involved in various signaling events, such as cell proliferation, survival, and migration. However, the molecular mechanisms that link PA to cell migration are largely unknown. Here, we show that PA binds to the tyrosine kinase Fer and enhances its ability to phosphorylate cortactin, a protein that promotes actin polymerization. We found that a previously unknown lipid-binding module in Fer adjacent to the F-BAR [Fes-Cdc42–interacting protein 4 (CIP4) homology (FCH) and bin-amphiphysin-Rvs] domain mediated PA binding. We refer to this lipid-binding domain as the FX (F-BAR extension) domain. Overexpression of Fer enhanced lamellipodia formation and cell migration in a manner dependent on PLD activity and the PA-FX interaction. Thus, the PLD-PA pathway promotes cell migration through Fer-induced enhancement of actin polymerization.


Journal of Biological Chemistry | 2002

Phosphatidylinositol 4-Phosphate 5-Kinase Is Essential for ROCK-mediated Neurite Remodeling

Masakazu Yamazaki; Hideyuki Miyazaki; Hiroshi Watanabe; Takehiko Sasaki; Tomohiko Maehama; Michael A. Frohman; Yasunori Kanaho

Phosphatidylinositol 4-phosphate 5-kinase (PIP-5kin) regulates actin cytoskeletal reorganization through its product phosphatidylinositol 4,5-bisphosphate. In the present study we demonstrate that PIP-5kin is essential for neurite remodeling, which is regulated by actin cytoskeletal reorganization in neuroblastoma N1E-115 cells. Overexpression of wild-type mouse PIP-5kin-α inhibits the neurite formation that is normally stimulated by serum depletion, whereas a lipid kinase-defective mutant of PIP-5kin-α, D266A, triggers neurite extension even in the presence of serum and blocks lysophosphatidic acid-induced neurite retraction. These results phenocopy those previously reported for the small GTPase RhoA and its effector p160 Rho-associated coiled coil-forming protein kinase (ROCK). However, the ROCK-specific inhibitor Y-27632 failed to block the inhibition by PIP-5kin-α of neurite extension, whereas D266A did block the neurite retraction induced by overexpression of ROCK. These results, taken together, suggest that PIP-5kin-α functions as a downstream effector for RhoA/ROCK to couple lysophosphatidic acid signaling to neurite retraction presumably through its product phosphatidylinositol 4,5-bisphosphate.


Science Signaling | 2012

Key Roles for the Lipid Signaling Enzyme Phospholipase D1 in the Tumor Microenvironment During Tumor Angiogenesis and Metastasis

Qin Chen; Tsunaki Hongu; Takanobu Sato; Yue Zhang; Wahida H. Ali; Cavallo Ja; van der Velden A; Huasong Tian; Di Paolo G; Bernhard Nieswandt; Yasunori Kanaho; Michael A. Frohman

Genetic ablation or pharmacological inhibition of a lipid signaling enzyme attenuates tumor growth and metastasis. Targeting the Tumor Microenvironment Phospholipase D (PLD) is an enzyme that produces the signaling lipid phosphatidic acid and promotes the proliferation, survival, invasion, and metastasis of cancer cells. Chen et al. examined the role of the PLD isoforms PLD1 and PLD2 in the tumor environment. They found that compared to wild-type mice, mice deficient in PLD1 developed smaller, less vascularized tumors as well as fewer lung metastases in a xenograft model. Furthermore, mice treated with an inhibitor of PLD1 also developed smaller tumors and fewer metastases. These results suggest that PLD1 inhibitors could be developed to treat cancer. Angiogenesis inhibitors, which target tumor cells, confer only short-term benefits on tumor growth. We report that ablation of the lipid signaling enzyme phospholipase D1 (PLD1) in the tumor environment compromised the neovascularization and growth of tumors. PLD1 deficiency suppressed the activation of Akt and mitogen-activated protein kinase signaling pathways by vascular endothelial growth factor in vascular endothelial cells, resulting in decreased integrin-dependent cell adhesion to, and migration on, extracellular matrices, as well as reduced tumor angiogenesis in a xenograft model. In addition, mice lacking PLD1 incurred fewer lung metastases than did wild-type mice. Bone marrow transplantation and binding studies identified a platelet-derived mechanism involving decreased tumor cell–platelet interactions, in part because of impaired activation of αIIbβ3 integrin in platelets, which decreased the seeding of tumor cells into the lung parenchyma. Treatment with a small-molecule inhibitor of PLD1 phenocopied PLD1 deficiency, efficiently suppressing both tumor growth and metastasis in mice. These findings reveal that PLD1 in the tumor environment promotes tumor growth and metastasis and, taken together with previous reports on the roles of PLD in tumor cell–intrinsic adaptations to stress, suggest the potential use of PLD inhibitors as cancer therapeutics.

Collaboration


Dive into the Yasunori Kanaho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Frohman

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomohiko Maehama

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Watanabe

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge