Yasunori Yokoyama
Nagoya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yasunori Yokoyama.
Toxins | 2013
Tomoyoshi Takahashi; Fumimasa Nomura; Yasunori Yokoyama; Yohko Tanaka-Takiguchi; Michio Homma; Kingo Takiguchi
Melittin induces various reactions in membranes and has been widely studied as a model for membrane-interacting peptide; however, the mechanism whereby melittin elicits its effects remains unclear. Here, we observed melittin-induced changes in individual giant liposomes using direct real-time imaging by dark-field optical microscopy, and the mechanisms involved were correlated with results obtained using circular dichroism, cosedimentation, fluorescence quenching of tryptophan residues, and electron microscopy. Depending on the concentration of negatively charged phospholipids in the membrane and the molecular ratio between lipid and melittin, melittin induced the “increasing membrane area”, “phased shrinkage”, or “solubilization” of liposomes. In phased shrinkage, liposomes formed small particles on their surface and rapidly decreased in size. Under conditions in which the increasing membrane area, phased shrinkage, or solubilization were mainly observed, the secondary structure of melittin was primarily estimated as an α-helix, β-like, or disordered structure, respectively. When the increasing membrane area or phased shrinkage occurred, almost all melittin was bound to the membranes and reached more hydrophobic regions of the membranes than when solubilization occurred. These results indicate that the various effects of melittin result from its ability to adopt various structures and membrane-binding states depending on the conditions.
Proteins | 2004
Yasunori Yokoyama; Masashi Sonoyama; Shigeki Mitaku
Heterogeneity in the state of bacteriorhodopsin in purple membrane was studied through temperature jump experiments carried out in darkness and under illumination with visible light. The thermal denaturation, the irreversible component of spectral change at high temperature, had two decay components, suggesting that bacteriorhodopsin in purple membrane has heterogeneous stability. The temperature dependence of kinetic parameters under illumination revealed that the fast‐decay component gradually increased at above 60°C, indicating that the proportion of unstable bacteriorhodopsin increased. Significant change in the visible circular dichroism (CD) spectra was observed in darkness in the same temperature range as the increase of the fast‐decay component under illumination. Denaturation experiments for C‐terminal‐cleaved bacteriorhodopsin showed that the C‐terminal segment had some effect on the structural stability of bacteriorhodopsin under illumination. Dynamic and static models of the inhomogeneous stability of bacteriorhodopsin in purple membrane are discussed on the basis of the results of the denaturation kinetics and the visible CD spectra. Proteins 2004;54:000–000.
Journal of Physical Chemistry B | 2010
Yasunori Yokoyama; Lumi Negishi; Taku Kitoh; Masashi Sonoyama; Yasuo Asami; Shigeki Mitaku
Previous studies on the correlation between bacteriorhodopsin (bR) disassembly and photobleaching suggested that a weakening of intermolecular interactions is responsible for irreversible photobleaching (Mukai, Y.; Kamo, N.; Mitaku, S. Protein Eng. 1999, 12, 755-759; Yokoyama, Y.; Sonoyama, M.; Mitaku, S. J. Biochem. 2002, 131, 785-790). In order to reveal the role of the lipid matrix in bR assembly and photobleaching, we reconstituted bR into diacylphosphatidylcholine (diacylPC) vesicles with three different saturated acyl-chain lengths. Visible circular dichroism (CD) spectra collected upon photobleaching showed an exciton-to-positive transition for bR reconstituted into dimyristoyl-, dipalmitoyl-, and distearoyl-PC vesicles around 17, 35, and 50 °C, respectively. These transition temperatures were close to the main transition temperature of reconstituted vesicles measured by calorimetry, indicating that the lipid phase transition brought about protein disaggregation. Absorption spectra of reconstituted bR exhibited a blue-shifted retinal absorption during protein disaggregation in the ground state. Absorption spectra collected from samples exposed to continuous illumination revealed an accumulation of M-intermediate state, and the absorption band around 410 nm underwent a blue shift through the visible CD change, indicating conformational perturbations due to protein disassembly. Irreversible photobleaching started to occur at the same temperature range as the change in the visible CD spectrum, clarifying the correlation between bR disassembly and photobleaching. In contrast, no thermal bleaching was observed below 60 °C for any sample kept in the dark. A plausible model for irreversible photobleaching is presented, on the basis of these experimental results.
Journal of Physical Chemistry B | 2013
Masaru Yoshino; Takashi Kikukawa; Hiroshi Takahashi; Toshiyuki Takagi; Yasunori Yokoyama; Hideki Amii; Teruhiko Baba; Toshiyuki Kanamori; Masashi Sonoyama
A membrane protein bacteriorhodopsin (bR) that is successfully reconstituted in liposome of a novel partially fluorinated analog of dimyristoylphosphatidylcholine (DMPC) with the perfluorobutyl segments in the myristoyl groups, diF4H10-PC, has been investigated by some spectroscopic and X-ray diffraction techniques to clarify effects of substitution of nine hydrogen atoms by fluorine atoms on structural and physical properties of the membrane protein by comparison with the previous results on proteoliposome of bR and DMPC. Below the gel-to-liquid crystalline phase transition of diF4H10-PC bilayer, bR molecules adopt the two-dimensional lattice structure of trimers as the structural unit and show a photocycle very similar to that of native purple membrane like reconstituted bR in DMPC liposome in the gel phase. Even upon heating up to temperatures well above the phase transition, the nativelike functional reconstitution and higher structural stability of bR molecules in diF4H10-PC liposome are retained, which strikingly contrasts with lipid phase transition-induced disaggregation of protein molecules and light-induced denaturation in DMPC liposome. Greater membrane rigidity and low affinity between bR and fluorinated lipid molecules are proposed as a driving force for keeping nativelike properties of bR molecules in diF4H10-PC liposome even in the fluid phase.
Journal of Materials Chemistry C | 2015
Takeshi Koyama; Taiki Matsuno; Yasunori Yokoyama; Hideo Kishida
We report a broad photoluminescence (PL) band of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) ranging from 1.2 to 3.0 eV over the full range of the visible region. Comparison with the PL of related materials reveals that the origin of the observed PL of PEDOT/PSS is PSS. This study indicates that the removal of excess PSS improves the optical properties of PEDOT/PSS for application as transparent electrodes.
Journal of Physical Chemistry B | 2014
Yasunori Yokoyama; Kosuke Yamada; Yosuke Higashi; Satoshi Ozaki; Haorang Wang; Naoki Koito; Naoya Watanabe; Masashi Sonoyama; Shigeki Mitaku
Purple membrane (PM), which is a membrane patch formed by the self-assembly of the membrane protein bacteriorhodopsin (bR) with archaeal lipids, is a good subject for studying the mechanism for the supramolecular structural formation of membrane proteins. Several studies have suggested that PM is not simply planar but that it has a curvature. Atomic force microscopy (AFM) studies also indicate the presence of dome-like structures (bumps) on the cytoplasmic surface of PM. PM must have a curvature to form the bump structures; therefore, bump formations will be related to a mechanism for supramolecular structural formation via self-assembly. To elucidate the effect of an asymmetric distribution of charged residues between two aqueous domains on the bump curvature, AFM topography of identical PM sheets were examined with variation of the solvent ionic strength and pH using a newly constructed solvent circulation system. The radius and height distributions of the bumps on the identical PM sheets indicated a linear correlation. The bump curvature, which was simply estimated by the slope of the distribution, became smaller with increasing KCl concentration, which suggests that tension at the cytoplasmic surface caused by electrostatic repulsive force between negatively charged amino acid residues becomes weaker by the electrostatic shielding effect. AFM observations revealed that the bump curvature remained even at high KCl concentration where the Debye length is within a few Angstroms; therefore, the contribution of the intrinsic difference between the domain sizes of bR between two sides was confirmed. Interestingly, the bump curvature was significantly increased by the addition of CaCl2 and then decreased with a similar dependency to KCl at higher CaCl2 concentration. The effect of pH on the bump curvature was also examined, where the curvature increased and reached a maximum at pH 9, while it decreased above pH 10, at which point the two-dimensional crystalline lattice of bR began to disassemble. These experimental results indicate that the bump curvature is strongly influenced by electrostatic interactions. A plausible model for bump structure formation by electrostatic repulsive force is presented based on these results.
Photochemistry and Photobiology | 2010
Yasunori Yokoyama; Masashi Sonoyama; Shigeki Mitaku
Kinetic studies of irreversible photobleaching of bacteriorhodopsin (bR) in purple membrane (PM) at neutral pH have previously indicated the existence of two kinds of species which differ in their structural stability. bR was shown to have kinetically slow‐ and fast‐decayed components with the faster one increasing with changes in intra‐ and intermolecular structures in darkness. However, our recent work reported that photobleaching kinetics above pH 10 were characterized by a single‐decay component. In order to elucidate the factors responsible for the heterogeneous or homogeneous stability of photobleaching, we conducted investigations into the structural changes in bR in PM induced by photobleaching at pH 7 and 11 by attenuated total reflection Fourier transform infrared (ATR‐FTIR) spectroscopy. ATR‐FTIR spectra of bR photobleached at pH 7 and 11 showed that an increase in IR peak intensity at 1656 cm−1 occurred simultaneously with decreases at 1666 cm−1, indicating an αII‐to‐αI transition in transmembrane helices during photobleaching. The most significant change in IR spectra occurred at 1626 cm−1 for samples photobleached at pH 7, and was attributed to structures formed between adjacent molecules. The origin of the heterogeneity of photobleaching is discussed on the basis of structural characteristics found in the bleached membranes.
Journal of Applied Physics | 2017
Yasunori Yokoyama; Hikaru Tanaka; Shunsuke Yano; Hiroshi Takahashi; Takashi Kikukawa; Masashi Sonoyama; Koshi Takenaka
We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline latt...
Biochimica et Biophysica Acta | 1999
Yoshihiko Uratani; Mieko Kobayashi; Yasunori Yokoyama; Tadakazu Maeda; Sigeki Mitaku; Toshimitsu Hoshino
For functional reconstitution of bacterial cotransporters (carriers or permeases) including the sodium-coupled branched-chain amino acid carrier (LIV-II carrier) of Pseudomonas aeruginosa, the presence of phospholipid is required through the process of solubilization and purification of the transporters from the bacterial membranes, suggesting the possibility that phospholipid may stabilize the structure of the cotransporter proteins to be in a functional form. In this study, this possibility was examined by studying the effect of denaturant on the secondary structure of the LIV-II carrier purified in the absence and presence of phospholipid using circular dichroism (CD) spectroscopy. CD spectra of the purified LIV-II carrier solubilized in n-octyl-beta-D-glucopyranoside (OG), OG/dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) mixture, and dispersed into DOPE/DOPG small unilamellar vesicles were measured in the absence of denaturant. The three spectra were very similar and had a trough at 222 nm with mean residue molar ellipticity of -23000 deg.cm(2)/dmol and a shoulder at 208 nm. CD spectral analyses with three different methods (S.W. Provencher, J. Glöckner, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20 (1981) 33-37; J.Y. Yang, C.-S.C. Wu, H.Z. Martinez, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130 (1986) 208-269; N. Sreerama, R.W. Woody, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209 (1993) 32-44) revealed that the LIV-II carrier solubilized in OG/DOPE/DOPG mixture contained 69-75% alpha-helix and 0-9% beta-sheet. Addition of 6 M guanidine hydrochloride decreased 48% of the amplitude at 222 nm of the CD spectrum of the carrier solubilized in OG alone and 9-14% of the CD amplitude of the carrier solubilized in OG/DOPE/DOPG or OG/dioleoylphosphatidylcholine mixture and dispersed in liposomes composed of DOPE/DOPG. These results show that the ordered secondary structure of the LIV-II carrier is partially unfolded in OG without phospholipid by denaturant but is greatly stabilized with phospholipids with oleoyl chains independently of their polar head group composition and suggest that the alpha-helical structure of the carrier is mainly embedded in the lipid environment.
Journal of Biochemistry | 2002
Yasunori Yokoyama; Masashi Sonoyama; Shigeki Mitaku
Collaboration
Dive into the Yasunori Yokoyama's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs